These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30048720)

  • 1. The basic mechanical structure of the skeletal muscle machinery: One model for linking microscopic and macroscopic scales.
    Günther M; Haeufle DFB; Schmitt S
    J Theor Biol; 2018 Nov; 456():137-167. PubMed ID: 30048720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hill-type muscle model with serial damping and eccentric force-velocity relation.
    Haeufle DF; Günther M; Bayer A; Schmitt S
    J Biomech; 2014 Apr; 47(6):1531-6. PubMed ID: 24612719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A macroscopic ansatz to deduce the Hill relation.
    Günther M; Schmitt S
    J Theor Biol; 2010 Apr; 263(4):407-18. PubMed ID: 20045704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models.
    Günther M; Schmitt S; Wank V
    Biol Cybern; 2007 Jul; 97(1):63-79. PubMed ID: 17598125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle contraction history: modified Hill versus an exponential decay model.
    Ettema GJ; Meijer K
    Biol Cybern; 2000 Dec; 83(6):491-500. PubMed ID: 11130582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling functional effects of muscle geometry.
    van der Linden BJ; Koopman HF; Grootenboer HJ; Huijing PA
    J Electromyogr Kinesiol; 1998 Apr; 8(2):101-9. PubMed ID: 9680950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling concentric contraction of muscle using an improved cross-bridge model.
    Wu JZ; Herzog W
    J Biomech; 1999 Aug; 32(8):837-48. PubMed ID: 10433426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting low-velocity concentric and eccentric dynamic muscle properties from isometric contraction experiments.
    Rockenfeller R; Günther M
    Math Biosci; 2016 Aug; 278():77-93. PubMed ID: 27321191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical behaviour of rat skeletal muscle during fatiguing stretch-shortening cycles.
    Ettema GJ
    Exp Physiol; 1997 Jan; 82(1):107-19. PubMed ID: 9023510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions.
    Sandercock TG; Heckman CJ
    J Neurophysiol; 1997 Mar; 77(3):1538-52. PubMed ID: 9084618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A distribution-moment model of energetics in skeletal muscle.
    Ma SP; Zahalak GI
    J Biomech; 1991; 24(1):21-35. PubMed ID: 2026631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining muscle elastance as a parameter.
    Palladino JL; Noordergraaf A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5315-8. PubMed ID: 18003207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cross-bridge based model of force depression: Can a single modification address both transient and steady-state behaviors?
    Corr DT; Herzog W
    J Biomech; 2016 Mar; 49(5):726-734. PubMed ID: 26928777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A thermodynamic optimization analysis of a possible relation between the parameters that determine the energetics of muscle contraction in steady state.
    Santillán M
    J Theor Biol; 1999 Jul; 199(1):105-12. PubMed ID: 10419763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A force-similarity model of the activated muscle is able to predict primary locomotor functions.
    Kokshenev VB
    J Biomech; 2008; 41(4):912-5. PubMed ID: 18154975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle, the motor of movement: properties in function, experiment and modelling.
    Huijing PA
    J Electromyogr Kinesiol; 1998 Apr; 8(2):61-77. PubMed ID: 9680947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can a rheological muscle model predict force depression/enhancement?
    Forcinito M; Epstein M; Herzog W
    J Biomech; 1998 Dec; 31(12):1093-9. PubMed ID: 9882041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of biophysical muscle properties on simulating fast human arm movements.
    Bayer A; Schmitt S; Günther M; Haeufle DFB
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):803-821. PubMed ID: 28387534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.
    Ovesy M; Nazari MA; Mahdavian M
    Biol Cybern; 2016 Feb; 110(1):73-80. PubMed ID: 26837750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new motor model representing the stretch-induced force enhancement and shortening-induced force depression in skeletal muscle.
    Tamura Y; Saito M; Nagato R
    J Biomech; 2005 Apr; 38(4):877-84. PubMed ID: 15713309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.