These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30048720)

  • 21. A rheological motor model for vertebrate skeletal muscle in due consideration of non-linearity.
    Tamura Y; Saito M
    J Biomech; 2002 Sep; 35(9):1273-7. PubMed ID: 12163316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human muscle modelling from a user's perspective.
    van den Bogert AJ; Gerritsen KG; Cole GK
    J Electromyogr Kinesiol; 1998 Apr; 8(2):119-24. PubMed ID: 9680952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling of force production in skeletal muscle undergoing stretch.
    Cole GK; van den Bogert AJ; Herzog W; Gerritsen KG
    J Biomech; 1996 Aug; 29(8):1091-104. PubMed ID: 8817377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A continuum model for skeletal muscle contraction at homogeneous finite deformations.
    Sharifimajd B; Stålhand J
    Biomech Model Mechanobiol; 2013 Oct; 12(5):965-73. PubMed ID: 23184063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical model of the frog skeletal muscle--analysis of non-linear mechanical properties.
    Akazawa K; Fujii K
    Front Med Biol Eng; 1989; 1(4):331-40. PubMed ID: 2486920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spreading out muscle mass within a Hill-type model: a computer simulation study.
    Günther M; Röhrle O; Haeufle DF; Schmitt S
    Comput Math Methods Med; 2012; 2012():848630. PubMed ID: 23227110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Force recovery after activated shortening in whole skeletal muscle: transient and steady-state aspects of force depression.
    Corr DT; Herzog W
    J Appl Physiol (1985); 2005 Jul; 99(1):252-60. PubMed ID: 15746298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical damping conditions for third order muscle models: implications for force control.
    Piovesan D; Pierobon A; Mussa Ivaldi FA
    J Biomech Eng; 2013 Oct; 135(10):101010. PubMed ID: 23896614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple Hill element-nonlinear spring model of muscle contraction biomechanics.
    Schultz AB; Faulkner JA; Kadhiresan VA
    J Appl Physiol (1985); 1991 Feb; 70(2):803-12. PubMed ID: 2022572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation.
    Josephson RK; Edman KA
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):511-25. PubMed ID: 9518709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. History effect and timing of force production introduced in a skeletal muscle model.
    Kosterina N; Westerblad H; Eriksson A
    Biomech Model Mechanobiol; 2012 Sep; 11(7):947-57. PubMed ID: 22203363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the role of Ca
    Karami M; Calvo B; Zohoor H; Firoozbakhsh K; Grasa J
    J Theor Biol; 2019 Jan; 461():76-83. PubMed ID: 30340054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation.
    Lan G; Sun SX
    Biophys J; 2005 Jun; 88(6):4107-17. PubMed ID: 15778440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compliant realignment of binding sites in muscle: transient behavior and mechanical tuning.
    Daniel TL; Trimble AC; Chase PB
    Biophys J; 1998 Apr; 74(4):1611-21. PubMed ID: 9545027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viscoelastic characteristics of muscle: passive stretching versus muscular contractions.
    Taylor DC; Brooks DE; Ryan JB
    Med Sci Sports Exerc; 1997 Dec; 29(12):1619-24. PubMed ID: 9432095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A modified Hill muscle model that predicts muscle power output and efficiency during sinusoidal length changes.
    Lichtwark GA; Wilson AM
    J Exp Biol; 2005 Aug; 208(Pt 15):2831-43. PubMed ID: 16043588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of isovelocity extension of activated muscle: a Hill-type model for eccentric contractions and a method for parameter determination.
    Till O; Siebert T; Rode C; Blickhan R
    J Theor Biol; 2008 Nov; 255(2):176-87. PubMed ID: 18771670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanics of mouse skeletal muscle when shortening during relaxation.
    Barclay CJ; Lichtwark GA
    J Biomech; 2007; 40(14):3121-9. PubMed ID: 17499255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determinants of work produced by skeletal muscle: potential limitations of activation and relaxation.
    Caiozzo VJ; Baldwin KM
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C1049-56. PubMed ID: 9316426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of muscle series elasticity to maximum performance in drop jumping.
    Böhm H; Cole GK; Brüggemann GP; Ruder H
    J Appl Biomech; 2006 Feb; 22(1):3-13. PubMed ID: 16760562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.