These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 3004986)

  • 1. Formation of an aspartyl phosphate intermediate in the reactions of nucleoside phosphotransferase from carrots.
    Stelte B; Witzel H
    Eur J Biochem; 1986 Feb; 155(1):121-4. PubMed ID: 3004986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleoside phosphotransferase from malt sprouts. II. Studies on the active site and the phospho-intermediate.
    Billich A; Stockhowe U; Witzel H
    Biol Chem Hoppe Seyler; 1986 Apr; 367(4):279-90. PubMed ID: 3013236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of aspartate and aspartate-derived antimetabolites with the enzymes of the threonine biosynthetic pathway of Escherichia coli.
    Shames SL; Ash DE; Wedler FC; Villafranca JJ
    J Biol Chem; 1984 Dec; 259(24):15331-9. PubMed ID: 6150934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The beta-aspartyl phosphate intermediate in a Leishmania donovani promastigote plasma membrane P-type ATPase.
    Anderson SA; Jiang S; Mukkada AJ
    Biochim Biophys Acta; 1994 Oct; 1195(1):81-8. PubMed ID: 7918569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of ubiquitin carboxyl-terminal hydrolase. Borohydride and hydroxylamine inactivate in the presence of ubiquitin.
    Pickart CM; Rose IA
    J Biol Chem; 1986 Aug; 261(22):10210-7. PubMed ID: 3015923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homoserine kinase of Escherichia coli: kinetic mechanism and inhibition by L-aspartate semialdehyde.
    Shames SL; Wedler FC
    Arch Biochem Biophys; 1984 Dec; 235(2):359-70. PubMed ID: 6097184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleoside phosphotransferase from barley. Characterization and evidence for ping pong kinetics involving phosphoryl enzyme.
    Prasher DC; Carr MC; Ives DH; Tsai TC; Frey PA
    J Biol Chem; 1982 May; 257(9):4931-9. PubMed ID: 6279651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt(III) affinity-labeled aspartokinase. Formation of substrate and inhibitor adducts.
    Wright JK; Feldman J; Takahashi M
    Biochemistry; 1976 Aug; 15(17):3704-10. PubMed ID: 182215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A phosphotransferase activity of the Bacillus subtilis sporulation protein Spo0F that employs phosphoramidate substrates.
    Zapf JW; Hoch JA; Whiteley JM
    Biochemistry; 1996 Mar; 35(9):2926-33. PubMed ID: 8608130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct chemical evidence for the mixed anhydride intermediate of carboxypeptidase A in ester and peptide hydrolysis.
    Sander ME; Witzel H
    Biochem Biophys Res Commun; 1985 Oct; 132(2):681-7. PubMed ID: 4062944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparative enzymic synthesis of nucleoside-5'-phosphates.
    Giziewicz J; Shugar D
    Acta Biochim Pol; 1975; 22(1):87-98. PubMed ID: 1093345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum adenosine triphosphatase.
    Degani C; Boyer PD
    J Biol Chem; 1973 Dec; 248(23):8222-6. PubMed ID: 4270949
    [No Abstract]   [Full Text] [Related]  

  • 13. Fructose 2,6-bisphosphate as a contaminant of commercially obtained fructose 6-phosphate: effect on PPi:fructose 6-phosphate phosphotransferase.
    Kruger NJ; Kombrink E; Beevers H
    Biochem Biophys Res Commun; 1983 Nov; 117(1):37-42. PubMed ID: 6318751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrite and hydroxylamine reduction in higher plants. Fractionation, electron donor and substrate specificity of leaf enzymes, principally from vegetable marrow (Cucurbita pepo L.).
    Hucklesby DP; Hewitt EJ
    Biochem J; 1970 Oct; 119(4):615-27. PubMed ID: 4395427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization and properties of uridine 5'-( -D-apio-D-furanosyl pyrophosphate).
    Kindel PK; Watson RR
    Biochem J; 1973 Jun; 133(2):227-41. PubMed ID: 4723773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of guanosine 5'-diphosphate D-mannose oxidoreductase from Phaseolus vulgaris.
    Liao TH; Barber GA
    Biochim Biophys Acta; 1972 Jul; 276(1):85-93. PubMed ID: 5047712
    [No Abstract]   [Full Text] [Related]  

  • 17. Qualitative and quantitative analysis of reducing carbohydrates by radiochromatography on ion-exchange papers.
    Conrad HE; Varboncouer E; James ME
    Anal Biochem; 1973 Feb; 51(2):486-500. PubMed ID: 4700198
    [No Abstract]   [Full Text] [Related]  

  • 18. Glutamic acid gamma-monohydroxamate and hydroxylamine are alternate substrates for Escherichia coli asparagine synthetase B.
    Boehlein SK; Schuster SM; Richards NG
    Biochemistry; 1996 Mar; 35(9):3031-7. PubMed ID: 8608142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping succinimides in aged polypeptides by chemical reduction.
    Carter DA; McFadden PN
    J Protein Chem; 1994 Jan; 13(1):89-96. PubMed ID: 8011075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspartokinase-homoserine dehydrogenase I from Escherichia coli: pH and chemical modification studies of the kinase activity.
    Angeles TS; Smanik PA; Borders CL; Viola RE
    Biochemistry; 1989 Oct; 28(22):8771-7. PubMed ID: 2557908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.