BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 30049887)

  • 1. Transneuronal Downregulation of the Premotor Cholinergic System After Corticospinal Tract Loss.
    Jiang YQ; Sarkar A; Amer A; Martin JH
    J Neurosci; 2018 Sep; 38(39):8329-8344. PubMed ID: 30049887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.
    Jiang YQ; Zaaimi B; Martin JH
    J Neurosci; 2016 Jan; 36(1):193-203. PubMed ID: 26740661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion.
    Jiang YQ; Armada K; Martin JH
    Exp Neurol; 2019 Nov; 321():113015. PubMed ID: 31326353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroplasticity of spinal cord injury and repair.
    Martin JH
    Handb Clin Neurol; 2022; 184():317-330. PubMed ID: 35034745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor Cortex Activity Organizes the Developing Rubrospinal System.
    Williams PT; Martin JH
    J Neurosci; 2015 Sep; 35(39):13363-74. PubMed ID: 26424884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal cord representation of motor cortex plasticity reflects corticospinal tract LTP.
    Amer A; Xia J; Smith M; Martin JH
    Proc Natl Acad Sci U S A; 2021 Dec; 118(52):. PubMed ID: 34934000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual motor cortex and spinal cord neuromodulation improves rehabilitation efficacy and restores skilled locomotor function in a rat cervical contusion injury model.
    Sharif H; Alexander H; Azam A; Martin JH
    Exp Neurol; 2021 Jul; 341():113715. PubMed ID: 33819448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses.
    Mishra AM; Pal A; Gupta D; Carmel JB
    J Physiol; 2017 Nov; 595(22):6953-6968. PubMed ID: 28752624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinically Relevant Levels of 4-Aminopyridine Strengthen Physiological Responses in Intact Motor Circuits in Rats, Especially After Pyramidal Tract Injury.
    Sindhurakar A; Mishra AM; Gupta D; Iaci JF; Parry TJ; Carmel JB
    Neurorehabil Neural Repair; 2017 Apr; 31(4):387-396. PubMed ID: 28107804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade.
    Salimi I; Friel KM; Martin JH
    J Neurosci; 2008 Jul; 28(29):7426-34. PubMed ID: 18632946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor system plasticity after unilateral injury in the developing brain.
    Williams PTJA; Jiang YQ; Martin JH
    Dev Med Child Neurol; 2017 Dec; 59(12):1224-1229. PubMed ID: 28972274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective long-term reorganization of the corticospinal projection from the supplementary motor cortex following recovery from lateral motor cortex injury.
    McNeal DW; Darling WG; Ge J; Stilwell-Morecraft KS; Solon KM; Hynes SM; Pizzimenti MA; Rotella DL; Vanadurongvan T; Morecraft RJ
    J Comp Neurol; 2010 Mar; 518(5):586-621. PubMed ID: 20034062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury.
    Martin JH
    Neural Regen Res; 2016 Sep; 11(9):1389-1391. PubMed ID: 27857728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tail spasms in rat spinal cord injury: changes in interneuronal connectivity.
    Kapitza S; Zörner B; Weinmann O; Bolliger M; Filli L; Dietz V; Schwab ME
    Exp Neurol; 2012 Jul; 236(1):179-89. PubMed ID: 22569103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re-Establishment of Cortical Motor Output Maps and Spontaneous Functional Recovery via Spared Dorsolaterally Projecting Corticospinal Neurons after Dorsal Column Spinal Cord Injury in Adult Mice.
    Hilton BJ; Anenberg E; Harrison TC; Boyd JD; Murphy TH; Tetzlaff W
    J Neurosci; 2016 Apr; 36(14):4080-92. PubMed ID: 27053214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons.
    Nascimento F; Broadhead MJ; Tetringa E; Tsape E; Zagoraiou L; Miles GB
    Elife; 2020 Feb; 9():. PubMed ID: 32081133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective corticospinal tract injury in the rat induces primary afferent fiber sprouting in the spinal cord and hyperreflexia.
    Tan AM; Chakrabarty S; Kimura H; Martin JH
    J Neurosci; 2012 Sep; 32(37):12896-908. PubMed ID: 22973013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.