These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 30050008)

  • 41. Boosting Sodium Storage Performance of Hard Carbon Anodes by Pore Architecture Engineering.
    Liu M; Wu F; Bai Y; Li Y; Ren H; Zhao R; Feng X; Song T; Wu C
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47671-47683. PubMed ID: 34597033
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hollow porous carbon spheres for high initial coulombic efficiency and low-potential sodium ion storage.
    Lyu T; Liang L; Kang Shen P
    J Colloid Interface Sci; 2021 Dec; 604():168-177. PubMed ID: 34265677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aqueous Processing of Na
    Dall'Asta V; Buchholz D; Chagas LG; Dou X; Ferrara C; Quartarone E; Tealdi C; Passerini S
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34891-34899. PubMed ID: 28914523
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrasmall TiO
    Liu Y; Liu J; Bin D; Hou M; Tamirat AG; Wang Y; Xia Y
    ACS Appl Mater Interfaces; 2018 May; 10(17):14818-14826. PubMed ID: 29641170
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon-Coated SiO
    Buga MR; Spinu-Zaulet AA; Ungureanu CG; Mitran RA; Vasile E; Florea M; Neatu F
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361689
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tannin-Derived Hard Carbon for Stable Lithium-Ion Anode.
    He MJ; Xu LQ; Feng B; Hu JB; Chang SS; Liu GG; Liu Y; Xu BH
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-Dimensional SnS Decorated Carbon Nano-Networks as Anode Materials for Lithium and Sodium Ion Batteries.
    Zhou Y; Wang Q; Zhu X; Jiang F
    Nanomaterials (Basel); 2018 Feb; 8(3):. PubMed ID: 29495573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Iron-Doped Sodium Vanadium Oxyflurophosphate Cathodes for Sodium-Ion Batteries-Electrochemical Characterization and In Situ Measurements of Heat Generation.
    Essehli R; Maher K; Amin R; Abouimrane A; Mahmoud A; Muralidharan N; Petla RK; Yahia HB; Belharouak I
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41765-41775. PubMed ID: 32809791
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ganyong Starch Derived Hard Carbon Anodes for Sodium Ion Batteries.
    Arie AA; Hazel K; Kristianto H; Muljana H; Stievano L
    J Nanosci Nanotechnol; 2021 Jul; 21(7):4033-4036. PubMed ID: 33715739
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Self-Supporting, Flexible, Additive-Free, and Scalable Hard Carbon Paper Self-Interwoven by 1D Microbelts: Superb Room/Low-Temperature Sodium Storage and Working Mechanism.
    Hou BH; Wang YY; Ning QL; Li WH; Xi XT; Yang X; Liang HJ; Feng X; Wu XL
    Adv Mater; 2019 Oct; 31(40):e1903125. PubMed ID: 31402540
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sn Anodes Protected by Intermetallic FeSn
    Chen M; Xiao P; Yang K; Dong B; Xu D; Yan C; Liu X; Zai J; Low CJ; Qian X
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202219177. PubMed ID: 36813744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapidly Synthesized, Few-Layered Pseudocapacitive SnS
    Thangavel R; Samuthira Pandian A; Ramasamy HV; Lee YS
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40187-40196. PubMed ID: 29076723
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solvothermal-Derived S-Doped Graphene as an Anode Material for Sodium-Ion Batteries.
    Quan B; Jin A; Yu SH; Kang SM; Jeong J; Abruña HD; Jin L; Piao Y; Sung YE
    Adv Sci (Weinh); 2018 May; 5(5):1700880. PubMed ID: 29876213
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High ICE Hard Carbon Anodes for Lithium-Ion Batteries Enabled by a High Work Function.
    Ren N; Wang L; He X; Zhang L; Dong J; Chen F; Xiao J; Pan B; Chen C
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46813-46820. PubMed ID: 34546030
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading.
    He Y; Bai P; Gao S; Xu Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41380-41388. PubMed ID: 30403338
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries.
    Zhang X; Qu H; Ji W; Zheng D; Ding T; Abegglen C; Qiu D; Qu D
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11589-11599. PubMed ID: 32056422
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface-Confined SnS
    Li D; Sun Q; Zhang Y; Chen L; Wang Z; Liang Z; Si P; Ci L
    ChemSusChem; 2019 Jun; 12(12):2689-2700. PubMed ID: 30997950
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soft-Carbon-Coated, Free-Standing, Low-Defect, Hard-Carbon Anode To Achieve a 94% Initial Coulombic Efficiency for Sodium-Ion Batteries.
    He XX; Zhao JH; Lai WH; Li R; Yang Z; Xu CM; Dai Y; Gao Y; Liu XH; Li L; Xu G; Qiao Y; Chou SL; Wu M
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44358-44368. PubMed ID: 34506123
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbonaceous Anodes Derived from Sugarcane Bagasse for Sodium-Ion Batteries.
    Rath PC; Patra J; Huang HT; Bresser D; Wu TY; Chang JK
    ChemSusChem; 2019 May; 12(10):2302-2309. PubMed ID: 30835938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.