BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30050038)

  • 1. Pause sequences facilitate entry into long-lived paused states by reducing RNA polymerase transcription rates.
    Gabizon R; Lee A; Vahedian-Movahed H; Ebright RH; Bustamante CJ
    Nat Commun; 2018 Jul; 9(1):2930. PubMed ID: 30050038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo.
    Imashimizu M; Takahashi H; Oshima T; McIntosh C; Bubunenko M; Court DL; Kashlev M
    Genome Biol; 2015 May; 16(1):98. PubMed ID: 25976475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase.
    Herbert KM; Zhou J; Mooney RA; Porta AL; Landick R; Block SM
    J Mol Biol; 2010 May; 399(1):17-30. PubMed ID: 20381500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing.
    Zhilina E; Esyunina D; Brodolin K; Kulbachinskiy A
    Nucleic Acids Res; 2012 Apr; 40(7):3078-91. PubMed ID: 22140106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome-Wide Effects of NusA on RNA Polymerase Pausing in Bacillus subtilis.
    Jayasinghe OT; Mandell ZF; Yakhnin AV; Kashlev M; Babitzke P
    J Bacteriol; 2022 May; 204(5):e0053421. PubMed ID: 35258320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NusG controls transcription pausing and RNA polymerase translocation throughout the
    Yakhnin AV; FitzGerald PC; McIntosh C; Yakhnin H; Kireeva M; Turek-Herman J; Mandell ZF; Kashlev M; Babitzke P
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21628-21636. PubMed ID: 32817529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing.
    Kang JY; Mishanina TV; Bellecourt MJ; Mooney RA; Darst SA; Landick R
    Mol Cell; 2018 Mar; 69(5):802-815.e5. PubMed ID: 29499135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The σ
    Shikalov AB; Esyunina DM; Pupov DV; Kulbachinskiy AV; Petushkov IV
    Biochemistry (Mosc); 2019 Apr; 84(4):426-434. PubMed ID: 31228934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applied force provides insight into transcriptional pausing and its modulation by transcription factor NusA.
    Zhou J; Ha KS; La Porta A; Landick R; Block SM
    Mol Cell; 2011 Nov; 44(4):635-46. PubMed ID: 22099310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A backtrack-inducing sequence is an essential component of Escherichia coli σ(70)-dependent promoter-proximal pausing.
    Perdue SA; Roberts JW
    Mol Microbiol; 2010 Nov; 78(3):636-50. PubMed ID: 21382107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of a transcriptional pause by RNA anchoring to RNA polymerase.
    Komissarova N; Velikodvorskaya T; Sen R; King RA; Banik-Maiti S; Weisberg RA
    Mol Cell; 2008 Sep; 31(5):683-94. PubMed ID: 18775328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct versus limited-step reconstitution reveals key features of an RNA hairpin-stabilized paused transcription complex.
    Kyzer S; Ha KS; Landick R; Palangat M
    J Biol Chem; 2007 Jun; 282(26):19020-8. PubMed ID: 17502377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The elemental mechanism of transcriptional pausing.
    Saba J; Chua XY; Mishanina TV; Nayak D; Windgassen TA; Mooney RA; Landick R
    Elife; 2019 Jan; 8():. PubMed ID: 30618376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the role of RNA structures in transcriptional pausing using in vitro assays and in silico analyses.
    Jeanneau S; Jacques PÉ; Lafontaine DA
    RNA Biol; 2022 Jan; 19(1):916-927. PubMed ID: 35833713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gfh factors and NusA cooperate to stimulate transcriptional pausing and termination.
    Agapov A; Olina A; Esyunina D; Kulbachinskiy A
    FEBS Lett; 2017 Mar; 591(6):946-953. PubMed ID: 28236657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution.
    Shaevitz JW; Abbondanzieri EA; Landick R; Block SM
    Nature; 2003 Dec; 426(6967):684-7. PubMed ID: 14634670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA polymerase SI3 domain modulates global transcriptional pausing and pause-site fluctuations.
    Bao Y; Cao X; Landick R
    Nucleic Acids Res; 2024 May; 52(8):4556-4574. PubMed ID: 38554114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior.
    Adelman K; La Porta A; Santangelo TJ; Lis JT; Roberts JW; Wang MD
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13538-43. PubMed ID: 12370445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Basis for NusA Stabilized Transcriptional Pausing.
    Guo X; Myasnikov AG; Chen J; Crucifix C; Papai G; Takacs M; Schultz P; Weixlbaumer A
    Mol Cell; 2018 Mar; 69(5):816-827.e4. PubMed ID: 29499136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription factor regulation of RNA polymerase's torque generation capacity.
    Ma J; Tan C; Gao X; Fulbright RM; Roberts JW; Wang MD
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2583-2588. PubMed ID: 30635423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.