These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30050062)

  • 1. Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait.
    Ørsted M; Hoffmann AA; Rohde PD; Sørensen P; Kristensen TN
    Heredity (Edinb); 2019 Mar; 122(3):315-325. PubMed ID: 30050062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Decoupling of Thermal Hardiness across Metamorphosis in Drosophila melanogaster.
    Freda PJ; Alex JT; Morgan TJ; Ragland GJ
    Integr Comp Biol; 2017 Nov; 57(5):999-1009. PubMed ID: 29045669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental variation partitioned into separate heritable components.
    Ørsted M; Rohde PD; Hoffmann AA; Sørensen P; Kristensen TN
    Evolution; 2018 Jan; 72(1):136-152. PubMed ID: 29125643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).
    Schade FM; Shama LN; Wegner KM
    BMC Evol Biol; 2014 Jul; 14():164. PubMed ID: 25927537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constant, cycling, hot and cold thermal environments: strong effects on mean viability but not on genetic estimates.
    Ketola T; Kellermann V; Kristensen TN; Loeschcke V
    J Evol Biol; 2012 Jun; 25(6):1209-15. PubMed ID: 22515705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of X-linked quantitative trait loci affecting cold tolerance in Drosophila melanogaster and fine mapping by selective sweep analysis.
    Svetec N; Werzner A; Wilches R; Pavlidis P; Alvarez-Castro JM; Broman KW; Metzler D; Stephan W
    Mol Ecol; 2011 Feb; 20(3):530-44. PubMed ID: 21199023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of low stressful temperature on genetic variation of five quantitative traits in Drosophila melanogaster.
    Bubliy OA; Loeschcke V
    Heredity (Edinb); 2002 Jul; 89(1):70-5. PubMed ID: 12080372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations between environmental stress, selection history, and quantitative genetic variation in Drosophila melanogaster.
    Swindell WR; Bouzat JL
    Genetica; 2006 May; 127(1-3):311-20. PubMed ID: 16850235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diurnal variation in genetic parameters for locomotor activity in Drosophila melanogaster assessed under natural thermal conditions.
    Noer NK; Rohde PD; Sørensen P; Bahrndorff S; Kristensen TN
    J Evol Biol; 2024 Mar; 37(3):336-345. PubMed ID: 38320319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster.
    Garcia MJ; Littler AS; Sriram A; Teets NM
    Evolution; 2020 Jul; 74(7):1437-1450. PubMed ID: 32463118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The genetic basis and adult reproductive consequences of developmental thermal plasticity.
    Rodrigues LR; Zwoinska MK; Wiberg RAW; Snook RR
    J Anim Ecol; 2022 Jun; 91(6):1119-1134. PubMed ID: 35060127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene-by-temperature interactions and candidate plasticity genes for morphological traits in Drosophila melanogaster.
    Carreira VP; Imberti MA; Mensch J; Fanara JJ
    PLoS One; 2013; 8(7):e70851. PubMed ID: 23936253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental thermal plasticity among Drosophila melanogaster populations.
    Fallis LC; Fanara JJ; Morgan TJ
    J Evol Biol; 2014 Mar; 27(3):557-64. PubMed ID: 26230171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel trait adaptation across opposing thermal environments in experimental Drosophila melanogaster populations.
    Tobler R; Hermisson J; Schlötterer C
    Evolution; 2015 Jul; 69(7):1745-59. PubMed ID: 26080903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mortality from desiccation contributes to a genotype-temperature interaction for cold survival in Drosophila melanogaster.
    Kobey RL; Montooth KL
    J Exp Biol; 2013 Apr; 216(Pt 7):1174-82. PubMed ID: 23197100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stage-specific genotype-by-environment interactions for cold and heat hardiness in Drosophila melanogaster.
    Freda PJ; Ali ZM; Heter N; Ragland GJ; Morgan TJ
    Heredity (Edinb); 2019 Oct; 123(4):479-491. PubMed ID: 31164731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress temperatures and quantitative variation in Drosophila melanogaster.
    Imasheva AG; Loeschcke V; Zhivotovsky LA; Lazebny OE
    Heredity (Edinb); 1998 Sep; 81 ( Pt 3)():246-53. PubMed ID: 9800368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster.
    Loeschcke V; Kristensen TN; Norry FM
    J Insect Physiol; 2011 Sep; 57(9):1227-31. PubMed ID: 21708160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts.
    Clemson AS; Sgrò CM; Telonis-Scott M
    J Evol Biol; 2016 Dec; 29(12):2447-2463. PubMed ID: 27542565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.