These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30050152)

  • 1. High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon.
    Hao H; Ren J; Duan X; Lu G; Khoo IC; Gong Q; Gu Y
    Sci Rep; 2018 Jul; 8(1):11244. PubMed ID: 30050152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient single photon emission and collection based on excitation of gap surface plasmons.
    Lian H; Gu Y; Ren J; Zhang F; Wang L; Gong Q
    Phys Rev Lett; 2015 May; 114(19):193002. PubMed ID: 26024170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Purcell enhancement with efficient one-dimensional collection via coupled nanowire-nanorod system.
    Duan X; Ren J; Zhang F; Hao H; Lu G; Gong Q; Gu Y
    Nanotechnology; 2018 Jan; 29(4):045203. PubMed ID: 29144283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient collection for photon emission enhanced by the hybrid photonic-plasmonic cavity.
    Zhu G; Liao Q
    Opt Express; 2018 Nov; 26(24):31391-31401. PubMed ID: 30650725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deterministic photon-emitter coupling in chiral photonic circuits.
    Söllner I; Mahmoodian S; Hansen SL; Midolo L; Javadi A; Kiršanskė G; Pregnolato T; El-Ella H; Lee EH; Song JD; Stobbe S; Lodahl P
    Nat Nanotechnol; 2015 Sep; 10(9):775-8. PubMed ID: 26214251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evanescent-Vacuum-Enhanced Photon-Exciton Coupling and Fluorescence Collection.
    Ren J; Gu Y; Zhao D; Zhang F; Zhang T; Gong Q
    Phys Rev Lett; 2017 Feb; 118(7):073604. PubMed ID: 28256881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantum phase gate capable of effectively collecting photons based on a gap plasmon structure.
    Zhang Q; Hao H; Ren J; Zhang F; Gong Q; Gu Y
    Nanoscale; 2020 May; 12(18):10082-10089. PubMed ID: 32347868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directing fluorescence with plasmonic and photonic structures.
    Dutta Choudhury S; Badugu R; Lakowicz JR
    Acc Chem Res; 2015 Aug; 48(8):2171-80. PubMed ID: 26168343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable enhanced spontaneous emission in plasmonic waveguide cladded with liquid crystal and low-index metamaterial.
    Hao H; Ren J; Chen H; Khoo IC; Gu Y; Gong Q
    Opt Express; 2017 Feb; 25(4):3433-3444. PubMed ID: 28241557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous emission modulation of colloidal quantum dots via efficient coupling with hybrid plasmonic photonic crystal.
    Yuan XW; Shi L; Wang Q; Chen CQ; Liu XH; Sun LX; Zhang B; Zi J; Lu W
    Opt Express; 2014 Sep; 22(19):23473-9. PubMed ID: 25321816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From molecular design and materials construction to organic nanophotonic devices.
    Zhang C; Yan Y; Zhao YS; Yao J
    Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption Reduction of Large Purcell Enhancement Enabled by Topological State-Led Mode Coupling.
    Qian Z; Li Z; Hao H; Shan L; Zhang Q; Dong J; Gong Q; Gu Y
    Phys Rev Lett; 2021 Jan; 126(2):023901. PubMed ID: 33512207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid photon-plasmon nanowire lasers.
    Wu X; Xiao Y; Meng C; Zhang X; Yu S; Wang Y; Yang C; Guo X; Ning CZ; Tong L
    Nano Lett; 2013; 13(11):5654-9. PubMed ID: 24144390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superconducting nanowire single-photon detectors integrated with tantalum pentoxide waveguides.
    Wolff MA; Vogel S; Splitthoff L; Schuck C
    Sci Rep; 2020 Oct; 10(1):17170. PubMed ID: 33051576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure.
    Badugu R; Descrovi E; Lakowicz JR
    Anal Biochem; 2014 Jan; 445():1-13. PubMed ID: 24135654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide.
    Arcari M; Söllner I; Javadi A; Lindskov Hansen S; Mahmoodian S; Liu J; Thyrrestrup H; Lee EH; Song JD; Stobbe S; Lodahl P
    Phys Rev Lett; 2014 Aug; 113(9):093603. PubMed ID: 25215983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals.
    Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL
    Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.
    Kim JH; Aghaeimeibodi S; Richardson CJK; Leavitt RP; Englund D; Waks E
    Nano Lett; 2017 Dec; 17(12):7394-7400. PubMed ID: 29131963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-plasmon-induced modification on the spontaneous emission spectrum via subwavelength-confined anisotropic Purcell factor.
    Gu Y; Wang L; Ren P; Zhang J; Zhang T; Martin OJ; Gong Q
    Nano Lett; 2012 May; 12(5):2488-93. PubMed ID: 22512860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indistinguishable Photons from Deterministically Integrated Single Quantum Dots in Heterogeneous GaAs/Si
    Schnauber P; Singh A; Schall J; Park SI; Song JD; Rodt S; Srinivasan K; Reitzenstein S; Davanco M
    Nano Lett; 2019 Oct; 19(10):7164-7172. PubMed ID: 31470692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.