These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 30050163)

  • 1. Comparative metatranscriptomics reveals extracellular electron transfer pathways conferring microbial adaptivity to surface redox potential changes.
    Ishii S; Suzuki S; Tenney A; Nealson KH; Bretschger O
    ISME J; 2018 Dec; 12(12):2844-2863. PubMed ID: 30050163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial population and functional dynamics associated with surface potential and carbon metabolism.
    Ishii S; Suzuki S; Norden-Krichmar TM; Phan T; Wanger G; Nealson KH; Sekiguchi Y; Gorby YA; Bretschger O
    ISME J; 2014 May; 8(5):963-78. PubMed ID: 24351938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors.
    Levar CE; Chan CH; Mehta-Kolte MG; Bond DR
    mBio; 2014 Nov; 5(6):e02034. PubMed ID: 25425235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Scale Mutational Analysis of Geobacter sulfurreducens Reveals Distinct Molecular Mechanisms for Respiration and Sensing of Poised Electrodes versus Fe(III) Oxides.
    Chan CH; Levar CE; Jiménez-Otero F; Bond DR
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28674067
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of the major pilA transcriptional regulator in electrochemical responses of Geobacter sulfureducens PilR-deficient mutant biofilm formed on FTO electrodes.
    Huerta-Miranda GA; Arroyo-Escoto AI; Burgos X; Juárez K; Miranda-Hernández M
    Bioelectrochemistry; 2019 Jun; 127():145-153. PubMed ID: 30825658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geobacter cytochrome OmcZs binds riboflavin: implications for extracellular electron transfer.
    Thirumurthy MA; Jones AK
    Nanotechnology; 2020 Mar; 31(12):124001. PubMed ID: 31791015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochromes in Extracellular Electron Transfer in
    Ueki T
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33741623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of
    Fernandes AP; Nunes TC; Paquete CM; Salgueiro CA
    Biochem J; 2017 Feb; 474(5):797-808. PubMed ID: 28093471
    [No Abstract]   [Full Text] [Related]  

  • 9. Electromicrobiology: realities, grand challenges, goals and predictions.
    Nealson KH; Rowe AR
    Microb Biotechnol; 2016 Sep; 9(5):595-600. PubMed ID: 27506517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of electrochemical surface plasmon resonance (ESPR) to the study of electroactive microbial biofilms.
    Golden J; Yates MD; Halsted M; Tender L
    Phys Chem Chem Phys; 2018 Oct; 20(40):25648-25656. PubMed ID: 30289415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse Microorganisms in Sediment and Groundwater Are Implicated in Extracellular Redox Processes Based on Genomic Analysis of Bioanode Communities.
    Arbour TJ; Gilbert B; Banfield JF
    Front Microbiol; 2020; 11():1694. PubMed ID: 32849356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional extracellular electron transfer pathways of Geobacter sulfurreducens biofilms: Molecular insights into extracellular polymeric substances.
    Yang G; Xia X; Nie W; Qin B; Hou T; Lin A; Yao S; Zhuang L
    Environ Res; 2024 Mar; 245():118038. PubMed ID: 38147916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential-dependent extracellular electron transfer pathways of exoelectrogens.
    Liu DF; Li WW
    Curr Opin Chem Biol; 2020 Dec; 59():140-146. PubMed ID: 32769012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes.
    Gao Y; Lee J; Neufeld JD; Park J; Rittmann BE; Lee HS
    Sci Rep; 2017 Jul; 7(1):5099. PubMed ID: 28698657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electrifying physiology of Geobacter bacteria, 30 years on.
    Reguera G; Kashefi K
    Adv Microb Physiol; 2019; 74():1-96. PubMed ID: 31126529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbes, cables, and an electrical touch.
    Reguera G
    Int Microbiol; 2015 Sep; 18(3):151-7. PubMed ID: 27036742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens.
    Zacharoff L; Chan CH; Bond DR
    Bioelectrochemistry; 2016 Feb; 107():7-13. PubMed ID: 26407054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-gradient driven electron transport in a mixed community anodic biofilm.
    Yates MD; Barr Engel S; Eddie BJ; Lebedev N; Malanoski AP; Tender LM
    FEMS Microbiol Ecol; 2018 Jun; 94(6):. PubMed ID: 29722806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature's conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion?
    Chong GW; Karbelkar AA; El-Naggar MY
    Curr Opin Chem Biol; 2018 Dec; 47():7-17. PubMed ID: 30015234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp.
    Kato S; Hashimoto K; Watanabe K
    Microbes Environ; 2013; 28(1):141-8. PubMed ID: 23363619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.