These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30050427)

  • 1. Kick Control: Using the Attracting States Arising Within the Sensorimotor Loop of Self-Organized Robots as Motor Primitives.
    Sándor B; Nowak M; Koglin T; Martin L; Gros C
    Front Neurorobot; 2018; 12():40. PubMed ID: 30050427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion.
    Martin L; Sándor B; Gros C
    Front Neurorobot; 2016; 10():12. PubMed ID: 27803661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Organized Behavior Generation for Musculoskeletal Robots.
    Der R; Martius G
    Front Neurorobot; 2017; 11():8. PubMed ID: 28360852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Haptic Perception in Robots: A Review.
    Seminara L; Gastaldo P; Watt SJ; Valyear KF; Zuher F; Mastrogiovanni F
    Front Neurorobot; 2019; 13():53. PubMed ID: 31379549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.
    Grinke E; Tetzlaff C; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():11. PubMed ID: 26528176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust forward\backward control of wheeled mobile robots.
    Keymasi Khalaji A; Jalalnezhad M
    ISA Trans; 2021 Sep; 115():32-45. PubMed ID: 33454057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular robots with sensors and intelligence.
    Hagiya M; Konagaya A; Kobayashi S; Saito H; Murata S
    Acc Chem Res; 2014 Jun; 47(6):1681-90. PubMed ID: 24905779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot.
    Alexandrov AV; Lippi V; Mergner T; Frolov AA; Hettich G; Husek D
    Front Neurorobot; 2017; 11():22. PubMed ID: 28487646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics.
    Nurzaman SG; Yu X; Kim Y; Iida F
    Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems.
    Aguilar J; Zhang T; Qian F; Kingsbury M; McInroe B; Mazouchova N; Li C; Maladen R; Gong C; Travers M; Hatton RL; Choset H; Umbanhowar PB; Goldman DI
    Rep Prog Phys; 2016 Nov; 79(11):110001. PubMed ID: 27652614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural network-based exploratory learning and motor planning system for co-robots.
    Galbraith BV; Guenther FH; Versace M
    Front Neurorobot; 2015; 9():7. PubMed ID: 26257640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perception-action map learning in controlled multiscroll systems applied to robot navigation.
    Arena P; De Fiore S; Fortuna L; Patané L
    Chaos; 2008 Dec; 18(4):043119. PubMed ID: 19123629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical movement primitives: learning attractor models for motor behaviors.
    Ijspeert AJ; Nakanishi J; Hoffmann H; Pastor P; Schaal S
    Neural Comput; 2013 Feb; 25(2):328-73. PubMed ID: 23148415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of robust self-organized undulatory swimming based on local hydrodynamic force sensing.
    Thandiackal R; Melo K; Paez L; Herault J; Kano T; Akiyama K; Boyer F; Ryczko D; Ishiguro A; Ijspeert AJ
    Sci Robot; 2021 Aug; 6(57):. PubMed ID: 34380756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Posture Control-Human-Inspired Approaches for Humanoid Robot Benchmarking: Conceptualizing Tests, Protocols and Analyses.
    Mergner T; Lippi V
    Front Neurorobot; 2018; 12():21. PubMed ID: 29867428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Path Tracking Strategy for Car Like Robots with Sensor Unpredictability and Measurement Errors.
    Rayguru MM; Elara MR; Balakrishnan R; Muthugala MAVJ; Samarakoon SMBP
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.
    Buckley CL; Toyoizumi T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005926. PubMed ID: 29342146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological Properties of Mass-Spring Networks for Optimal Locomotion Learning.
    Urbain G; Degrave J; Carette B; Dambre J; Wyffels F
    Front Neurorobot; 2017; 11():16. PubMed ID: 28396634
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.