These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30050447)

  • 1. Simulation of Multispecies Desmoplastic Cancer Growth via a Fully Adaptive Non-linear Full Multigrid Algorithm.
    Ng CF; Frieboes HB
    Front Physiol; 2018; 9():821. PubMed ID: 30050447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models.
    Wise SM; Lowengrub JS; Cristini V
    Math Comput Model; 2011 Jan; 53(1-2):1-20. PubMed ID: 21076663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method.
    Wise SM; Lowengrub JS; Frieboes HB; Cristini V
    J Theor Biol; 2008 Aug; 253(3):524-43. PubMed ID: 18485374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane.
    Chen Y; Wise SM; Shenoy VB; Lowengrub JS
    Int J Numer Method Biomed Eng; 2014 Jul; 30(7):726-54. PubMed ID: 24443369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching.
    Cristini V; Li X; Lowengrub JS; Wise SM
    J Math Biol; 2009 Apr; 58(4-5):723-63. PubMed ID: 18787827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radial basis function-generated finite difference scheme for simulating the brain cancer growth model under radiotherapy in various types of computational domains.
    Dehghan M; Narimani N
    Comput Methods Programs Biomed; 2020 Oct; 195():105641. PubMed ID: 32726719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations.
    Jha N; Perfilieva I; Kritika
    MethodsX; 2023; 10():102206. PubMed ID: 37206645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Explicit Adaptive Finite Difference Method for the Cahn-Hilliard Equation.
    Ham S; Li Y; Jeong D; Lee C; Kwak S; Hwang Y; Kim J
    J Nonlinear Sci; 2022; 32(6):80. PubMed ID: 36089998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model of vascular desmoplastic multispecies tumor growth.
    Ng CF; Frieboes HB
    J Theor Biol; 2017 Oct; 430():245-282. PubMed ID: 28529153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating interfacial anisotropy in thin-film growth using an extended Cahn-Hilliard model.
    Torabi S; Lowengrub J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041603. PubMed ID: 22680484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphase modelling of vascular tumour growth in two spatial dimensions.
    Hubbard ME; Byrne HM
    J Theor Biol; 2013 Jan; 316():70-89. PubMed ID: 23032218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model and its fast numerical method for the tumor growth.
    Lee HG; Kim Y; Kim J
    Math Biosci Eng; 2015 Dec; 12(6):1173-87. PubMed ID: 26775855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-accuracy positivity-preserving numerical method for Keller-Segel model.
    Zhang L; Ge Y; Yang X
    Math Biosci Eng; 2023 Mar; 20(5):8601-8631. PubMed ID: 37161214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects.
    Dick C; Georgii J; Westermann R
    IEEE Trans Vis Comput Graph; 2011 Nov; 17(11):1663-75. PubMed ID: 21173453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.
    Heidenreich EA; Ferrero JM; Doblaré M; Rodríguez JF
    Ann Biomed Eng; 2010 Jul; 38(7):2331-45. PubMed ID: 20238165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized moving least squares approximation for the solution of local and non-local models of cancer cell invasion of tissue under the effect of adhesion in one- and two-dimensional spaces.
    Mohammadi V; Dehghan M
    Comput Biol Med; 2020 Sep; 124():103803. PubMed ID: 32738629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of 3D centimeter-scale continuum tumor growth at sub-millimeter resolution via distributed computing.
    Goodin DA; Frieboes HB
    Comput Biol Med; 2021 Jul; 134():104507. PubMed ID: 34157612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering.
    Sacco R; Causin P; Lelli C; Raimondi MT
    Meccanica; 2017; 52(14):3273-3297. PubMed ID: 32009677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.
    Vorobev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056312. PubMed ID: 21230581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.