These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30050453)

  • 1. Multiple Biogenic Amine Receptor Types Modulate Spider,
    Sukumar V; Liu H; Meisner S; French AS; Torkkeli PH
    Front Physiol; 2018; 9():857. PubMed ID: 30050453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein.
    Torkkeli PH; Liu H; French AS
    PLoS One; 2015; 10(9):e0138068. PubMed ID: 26368804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spider peripheral mechanosensory neurons are directly innervated and modulated by octopaminergic efferents.
    Widmer A; Höger U; Meisner S; French AS; Torkkeli PH
    J Neurosci; 2005 Feb; 25(6):1588-98. PubMed ID: 15703413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyramine and octopamine independently inhibit serotonin-stimulated aversive behaviors in Caenorhabditis elegans through two novel amine receptors.
    Wragg RT; Hapiak V; Miller SB; Harris GP; Gray J; Komuniecki PR; Komuniecki RW
    J Neurosci; 2007 Dec; 27(49):13402-12. PubMed ID: 18057198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca²(+) /calmodulin-dependent protein kinase II mediates the octopamine-induced increase in sensitivity in spider VS-3 mechanosensory neurons.
    Torkkeli PH; Panek I; Meisner S
    Eur J Neurosci; 2011 Apr; 33(7):1186-96. PubMed ID: 21366726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians.
    Bauknecht P; Jékely G
    BMC Biol; 2017 Jan; 15(1):6. PubMed ID: 28137258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminergic control and modulation of honeybee behaviour.
    Scheiner R; Baumann A; Blenau W
    Curr Neuropharmacol; 2006 Oct; 4(4):259-76. PubMed ID: 18654639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distribution of cholinergic neurons and their co-localization with FMRFamide, in central and peripheral neurons of the spider Cupiennius salei.
    Fabian-Fine R; Anderson CM; Roush MA; Johnson JAG; Liu H; French AS; Torkkeli PH
    Cell Tissue Res; 2017 Oct; 370(1):71-88. PubMed ID: 28687927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a prawn OA/TA receptor in Xenopus oocytes suggests functional selectivity between octopamine and tyramine.
    Jezzini SH; Reyes-Colón D; Sosa MA
    PLoS One; 2014; 9(10):e111314. PubMed ID: 25350749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanotransduction channel Piezo is widely expressed in the spider, Cupiennius salei, mechanosensory neurons and central nervous system.
    Johnson JAG; Liu H; Höger U; Rogers SM; Sivapalan K; French AS; Torkkeli PH
    Sci Rep; 2021 Apr; 11(1):7994. PubMed ID: 33846502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of multiple functional receptors for tyramine on an insect secretory epithelium.
    Zhang H; Blumenthal EM
    Sci Rep; 2017 Dec; 7(1):168. PubMed ID: 28279025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a tyramine receptor type 2 from hemocytes of rice stem borer, Chilo suppressalis.
    Wu SF; Xu G; Ye GY
    J Insect Physiol; 2015 Apr; 75():39-46. PubMed ID: 25772095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of Cys-loop receptor subunits and acetylcholine binding protein in the mechanosensory neurons, glial cells, and muscle tissue of the spider Cupiennius salei.
    Liu H; French AS; Torkkeli PH
    J Comp Neurol; 2017 Apr; 525(5):1139-1154. PubMed ID: 27650259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metamodulation of the biogenic amines: second-order modulation by steroid hormones and amine cocktails.
    Mesce KA
    Brain Behav Evol; 2002; 60(6):339-49. PubMed ID: 12563166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenic amine systems in the fruit fly Drosophila melanogaster.
    Monastirioti M
    Microsc Res Tech; 1999 Apr; 45(2):106-21. PubMed ID: 10332728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain.
    Balfanz S; Jordan N; Langenstück T; Breuer J; Bergmeier V; Baumann A
    J Neurochem; 2014 Apr; 129(2):284-96. PubMed ID: 24266860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation and modulation of biogenic amine neurotransmission in
    Rosikon KD; Bone MC; Lawal HO
    Front Physiol; 2023; 14():970405. PubMed ID: 36875033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two splicing variants of a novel family of octopamine receptors with different signaling properties.
    Wu SF; Xu G; Qi YX; Xia RY; Huang J; Ye GY
    J Neurochem; 2014 Apr; 129(1):37-47. PubMed ID: 24279508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of FMRFamide-related peptides and co-localization with glutamate in Cupiennius salei, an invertebrate model system.
    Tarr EA; Fidler BM; Gee KE; Anderson CM; Jager AK; Gallagher NM; Carroll KP; Fabian-Fine R
    Cell Tissue Res; 2019 Apr; 376(1):83-96. PubMed ID: 30406824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and pharmacological characterization of biogenic amine receptors from the diamondback moth, Plutella xylostella.
    Liu T; Zhan X; Yu Y; Wang S; Lu C; Lin G; Zhu X; He W; You M; You S
    Pest Manag Sci; 2021 Oct; 77(10):4462-4475. PubMed ID: 34004073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.