BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30050652)

  • 1. Metallic Nanoantioxidants as Potential Therapeutics for Type 2 Diabetes: A Hypothetical Background and Translational Perspectives.
    Lushchak O; Zayachkivska A; Vaiserman A
    Oxid Med Cell Longev; 2018; 2018():3407375. PubMed ID: 30050652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative reactive species in cell injury: Mechanisms in diabetes mellitus and therapeutic approaches.
    Fridlyand LE; Philipson LH
    Ann N Y Acad Sci; 2005 Dec; 1066():136-51. PubMed ID: 16533924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive species and diabetes: counteracting oxidative stress to improve health.
    Pérez-Matute P; Zulet MA; Martínez JA
    Curr Opin Pharmacol; 2009 Dec; 9(6):771-9. PubMed ID: 19766058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diabetes, oxidative stress and therapeutic strategies.
    Rochette L; Zeller M; Cottin Y; Vergely C
    Biochim Biophys Acta; 2014 Sep; 1840(9):2709-29. PubMed ID: 24905298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective role of antioxidants in diabetes-induced cardiac dysfunction.
    Vassort G; Turan B
    Cardiovasc Toxicol; 2010 Jun; 10(2):73-86. PubMed ID: 20458637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of free radicals, oxidative stress and antioxidant systems in diabetic vascular disease.
    Jakus V
    Bratisl Lek Listy; 2000; 101(10):541-51. PubMed ID: 11218944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions.
    Sandhir R; Yadav A; Sunkaria A; Singhal N
    Neurochem Int; 2015 Oct; 89():209-26. PubMed ID: 26315960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients.
    Babizhayev MA; Strokov IA; Nosikov VV; Savel'yeva EL; Sitnikov VF; Yegorov YE; Lankin VZ
    Cell Biochem Biophys; 2015 Apr; 71(3):1425-43. PubMed ID: 25427889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased monocyte-derived reactive oxygen species in type 2 diabetes: role of endoplasmic reticulum stress.
    Restaino RM; Deo SH; Parrish AR; Fadel PJ; Padilla J
    Exp Physiol; 2017 Feb; 102(2):139-153. PubMed ID: 27859785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of oxidative stress in the etiology of type 2 diabetes and the effect of antioxidant supplementation on glycemic control.
    Opara EC
    J Investig Med; 2004 Jan; 52(1):19-23. PubMed ID: 14989366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells.
    Ruenraroengsak P; Tetley TD
    Part Fibre Toxicol; 2015 Jul; 12():19. PubMed ID: 26133975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights.
    Omran B; Baek KH
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Oxidative-antioxidative balance disturbance and risk factors as well as vascular complications in patients with diabetes type 2].
    Knapik-Kordecka M; Piwowar A; Warwas M
    Wiad Lek; 2007; 60(7-8):329-34. PubMed ID: 18175551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species-responsive polymeric nanoparticles for alleviating sepsis-induced acute liver injury in mice.
    Chen G; Deng H; Song X; Lu M; Zhao L; Xia S; You G; Zhao J; Zhang Y; Dong A; Zhou H
    Biomaterials; 2017 Nov; 144():30-41. PubMed ID: 28820966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic Nanoparticles from Grape Seed for Modulating Oxidative Stress.
    Wang T; Fan Q; Hong J; Chen Z; Zhou X; Zhang J; Dai Y; Jiang H; Gu Z; Cheng Y; Li Y
    Small; 2021 Nov; 17(45):e2102485. PubMed ID: 34605169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy.
    Akhtar MJ; Alhadlaq HA; Kumar S; Alrokayan SA; Ahamed M
    Arch Toxicol; 2015 Nov; 89(11):1895-907. PubMed ID: 26223318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Free-radical reactions in diabetes mellitus].
    Mrowicka M
    Pol Merkur Lekarski; 2005 Oct; 19(112):571-6. PubMed ID: 16379329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia.
    Serebrovska Z; Swanson RJ; Portnichenko V; Shysh A; Pavlovich S; Tumanovska L; Dorovskych A; Lysenko V; Tertykh V; Bolbukh Y; Dosenko V
    Biomed Pharmacother; 2017 Aug; 92():69-77. PubMed ID: 28531802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells.
    Passagne I; Morille M; Rousset M; Pujalté I; L'azou B
    Toxicology; 2012 Sep; 299(2-3):112-24. PubMed ID: 22627296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT.
    Poblete Aro CE; Russell Guzmán JA; Soto Muñoz ME; Villegas González BE
    Medwave; 2015 Aug; 15(7):e6212. PubMed ID: 26351856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.