BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30051162)

  • 1. Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts.
    Uehara S; Udagawa N; Kobayashi Y
    Cell Mol Life Sci; 2018 Oct; 75(20):3683-3692. PubMed ID: 30051162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of osteoclast differentiation and bone resorption by Rho GTPases.
    Touaitahuata H; Blangy A; Vives V
    Small GTPases; 2014; 5():e28119. PubMed ID: 24614674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Podosome organization drives osteoclast-mediated bone resorption.
    Georgess D; Machuca-Gayet I; Blangy A; Jurdic P
    Cell Adh Migr; 2014; 8(3):191-204. PubMed ID: 24714644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts.
    Georgess D; Mazzorana M; Terrado J; Delprat C; Chamot C; Guasch RM; Pérez-Roger I; Jurdic P; Machuca-Gayet I
    Mol Biol Cell; 2014 Feb; 25(3):380-96. PubMed ID: 24284899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling.
    Uehara S; Udagawa N; Mukai H; Ishihara A; Maeda K; Yamashita T; Murakami K; Nishita M; Nakamura T; Kato S; Minami Y; Takahashi N; Kobayashi Y
    Sci Signal; 2017 Aug; 10(494):. PubMed ID: 28851822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined strategy of siRNA and osteoclast actin cytoskeleton automated imaging to identify novel regulators of bone resorption shows a non-mitotic function for anillin.
    Maurin J; Morel A; Hassen-Khodja C; Vives V; Jurdic P; Machuca-Gayet I; Blangy A
    Eur J Cell Biol; 2018 Nov; 97(8):568-579. PubMed ID: 30424898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apatite-mediated actin dynamics in resorbing osteoclasts.
    Saltel F; Destaing O; Bard F; Eichert D; Jurdic P
    Mol Biol Cell; 2004 Dec; 15(12):5231-41. PubMed ID: 15371537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Podosome and sealing zone: specificity of the osteoclast model.
    Jurdic P; Saltel F; Chabadel A; Destaing O
    Eur J Cell Biol; 2006 Apr; 85(3-4):195-202. PubMed ID: 16546562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rac-GTPase, osteoclast cytoskeleton and bone resorption.
    Razzouk S; Lieberherr M; Cournot G
    Eur J Cell Biol; 1999 Apr; 78(4):249-55. PubMed ID: 10350213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoclast motility: putting the brakes on bone resorption.
    Novack DV; Faccio R
    Ageing Res Rev; 2011 Jan; 10(1):54-61. PubMed ID: 19788940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamin inhibitor dynasore inhibits bone resorption by rapidly disrupting actin rings of osteoclasts.
    Thirukonda GJ; Uehara S; Nakayama T; Yamashita T; Nakamura Y; Mizoguchi T; Takahashi N; Yagami K; Udagawa N; Kobayashi Y
    J Bone Miner Metab; 2016 Jul; 34(4):395-405. PubMed ID: 26063501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone.
    Takito J; Inoue S; Nakamura M
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29587415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Actin-Binding Protein Cofilin and Its Interaction With Cortactin Are Required for Podosome Patterning in Osteoclasts and Bone Resorption In Vivo and In Vitro.
    Zalli D; Neff L; Nagano K; Shin NY; Witke W; Gori F; Baron R
    J Bone Miner Res; 2016 Sep; 31(9):1701-12. PubMed ID: 27064822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological functions of podosomes: From structure and function to therapy implications in osteoclast biology of bone resorption.
    Chen ZH; Wu JJ; Guo DY; Li YY; Chen MN; Zhang ZY; Yuan ZD; Zhang KW; Chen WW; Tian F; Ye JX; Li X; Yuan FL
    Ageing Res Rev; 2023 Mar; 85():101842. PubMed ID: 36621647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensin 3 is a new partner of Dock5 that controls osteoclast podosome organization and activity.
    Touaitahuata H; Morel A; Urbach S; Mateos-Langerak J; de Rossi S; Blangy A
    J Cell Sci; 2016 Sep; 129(18):3449-61. PubMed ID: 27505886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts.
    ten Harkel B; Schoenmaker T; Picavet DI; Davison NL; de Vries TJ; Everts V
    PLoS One; 2015; 10(10):e0139564. PubMed ID: 26426806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts.
    Vives V; Laurin M; Cres G; Larrousse P; Morichaud Z; Noel D; Côté JF; Blangy A
    J Bone Miner Res; 2011 May; 26(5):1099-110. PubMed ID: 21542010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption.
    Wilson SR; Peters C; Saftig P; Brömme D
    J Biol Chem; 2009 Jan; 284(4):2584-92. PubMed ID: 19028686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoclasts' Ability to Generate Trenches Rather Than Pits Depends on High Levels of Active Cathepsin K and Efficient Clearance of Resorption Products.
    Borggaard XG; Pirapaharan DC; Delaissé JM; Søe K
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-plastin phosphorylation regulates the early phase of sealing ring formation by actin bundling process in mouse osteoclasts.
    Chellaiah MA; Ma T; Majumdar S
    Exp Cell Res; 2018 Nov; 372(1):73-82. PubMed ID: 30244178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.