BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30051246)

  • 1. Mechanical Analysis of the Uterosacral Ligament: Swine vs. Human.
    Baah-Dwomoh A; Alperin M; Cook M; De Vita R
    Ann Biomed Eng; 2018 Dec; 46(12):2036-2047. PubMed ID: 30051246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of repeated biaxial loads on the creep properties of cardinal ligaments.
    Baah-Dwomoh A; De Vita R
    J Mech Behav Biomed Mater; 2017 Oct; 74():128-141. PubMed ID: 28599153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-structural and Biaxial Creep Properties of the Swine Uterosacral-Cardinal Ligament Complex.
    Tan T; Cholewa NM; Case SW; De Vita R
    Ann Biomed Eng; 2016 Nov; 44(11):3225-3237. PubMed ID: 27256362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Biaxial Biomechanical Properties of Post-menopausal Human Prolapsed and Non-prolapsed Uterosacral Ligament.
    Danso EK; Schuster JD; Johnson I; Harville EW; Buckner LR; Desrosiers L; Knoepp LR; Miller KS
    Sci Rep; 2020 Apr; 10(1):7386. PubMed ID: 32355180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biaxial mechanical properties of swine uterosacral and cardinal ligaments.
    Becker WR; De Vita R
    Biomech Model Mechanobiol; 2015 Jun; 14(3):549-60. PubMed ID: 25218641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histo-mechanical properties of the swine cardinal and uterosacral ligaments.
    Tan T; Davis FM; Gruber DD; Massengill JC; Robertson JL; De Vita R
    J Mech Behav Biomed Mater; 2015 Feb; 42():129-37. PubMed ID: 25482216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-plane and out-of-plane deformations of gilt utero-sacral ligaments.
    Donaldson K; Thomas J; Zhu Y; Clark-Deener S; Alperin M; De Vita R
    J Mech Behav Biomed Mater; 2022 Jul; 131():105249. PubMed ID: 35526346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and Characterization of the Murine Uterosacral Ligaments and Pelvic Floor Organs.
    Bastías CS; Savard LM; Eckstein KN; Connell K; Luetkemeyer CM; Ferguson VL; Calve S
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 36939242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on morphological characteristics of uterosacral and cardinal ligament in patients with severe pelvic organ prolapse based on MRI].
    Ma X; Shang S; Xie B; Sun X; Yang X; Wu J; Hong N; Wang J
    Zhonghua Fu Chan Ke Za Zhi; 2015 Sep; 50(9):668-72. PubMed ID: 26675393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of in vivo visco-hyperelastic properties of uterine suspensory tissue in women with and without pelvic organ prolapse.
    Luo J; Swenson CW; Betschart C; Feng F; Wang H; Ashton-Miller JA; DeLancey JOL
    J Mech Behav Biomed Mater; 2023 Jan; 137():105544. PubMed ID: 36332398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Stress distribution and deformation of uterosacral ligament and cardinal ligament under different working conditions simulated by the finite element model].
    Ma XX; Shang SY; Xie B; Chang Y; Sun XL; Yang X; Wu J; Hong N; Wang JL
    Zhonghua Fu Chan Ke Za Zhi; 2016 Feb; 51(2):114-9. PubMed ID: 26917480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of short-term moderate ZEN consumption on uterosacral ligament elasticity in pubertal gilts.
    Pack E; Stewart J; Rhoads M; Knight J; Clark S; Schmale DG; De Vita R
    Res Vet Sci; 2020 Dec; 133():202-209. PubMed ID: 33011603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ex Vivo Uniaxial Tensile Properties of Rat Uterosacral Ligaments.
    Donaldson K; De Vita R
    Ann Biomed Eng; 2023 Apr; 51(4):702-714. PubMed ID: 36652028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo properties of uterine suspensory tissue in pelvic organ prolapse.
    Luo J; Smith TM; Ashton-Miller JA; DeLancey JO
    J Biomech Eng; 2014 Feb; 136(2):021016. PubMed ID: 24317107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Fibrous Hydrogel Augmentation of Uterosacral Ligament Suspension for Treatment of Pelvic Organ Prolapse.
    Miller B; Wolfe W; Gentry JL; Grewal MG; Highley CB; De Vita R; Vaughan MH; Caliari SR
    Adv Healthc Mater; 2023 Sep; 12(22):e2300086. PubMed ID: 37220996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-3 adrenoceptor expression in the uterosacral ligament in the postmenopausal women with pelvic organ prolapse.
    Chong W; Fantl JA; Donovan M; Ascher-Walsh C
    Neurourol Urodyn; 2018 Sep; 37(7):2135-2140. PubMed ID: 29635716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanics of Uterosacral Ligaments: Current Knowledge, Existing Gaps, and Future Directions.
    Donaldson K; Huntington A; De Vita R
    Ann Biomed Eng; 2021 Aug; 49(8):1788-1804. PubMed ID: 33754254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ADAMTS-2, collagen type-1, TIMP-3 and papilin levels of uterosacral and cardinal ligaments in the etiopathogenesis of pelvic organ prolapse among women without stress urinary incontinence.
    Tola EN; Koroglu N; Yıldırım GY; Koca HB
    Eur J Obstet Gynecol Reprod Biol; 2018 Dec; 231():158-163. PubMed ID: 30388611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using stress MRI to analyze the 3D changes in apical ligament geometry from rest to maximal Valsalva: a pilot study.
    Luo J; Betschart C; Chen L; Ashton-Miller JA; DeLancey JO
    Int Urogynecol J; 2014 Feb; 25(2):197-203. PubMed ID: 24008367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vaginal versus robotic hysterectomy and concomitant pelvic support surgery: a comparison of postoperative vaginal length and sexual function.
    De La Cruz JF; Myers EM; Geller EJ
    J Minim Invasive Gynecol; 2014; 21(6):1010-4. PubMed ID: 24780383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.