These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1511 related articles for article (PubMed ID: 30051423)
1. Production of Extracellular Vesicles Loaded with Therapeutic Cargo. Lamichhane TN; Jay SM Methods Mol Biol; 2018; 1831():37-47. PubMed ID: 30051423 [TBL] [Abstract][Full Text] [Related]
2. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Lamichhane TN; Raiker RS; Jay SM Mol Pharm; 2015 Oct; 12(10):3650-7. PubMed ID: 26376343 [TBL] [Abstract][Full Text] [Related]
3. Delivery of Biomolecules via Extracellular Vesicles: A Budding Therapeutic Strategy. Stranford DM; Leonard JN Adv Genet; 2017; 98():155-175. PubMed ID: 28942793 [TBL] [Abstract][Full Text] [Related]
4. Functional Delivery of Lipid-Conjugated siRNA by Extracellular Vesicles. O'Loughlin AJ; Mäger I; de Jong OG; Varela MA; Schiffelers RM; El Andaloussi S; Wood MJA; Vader P Mol Ther; 2017 Jul; 25(7):1580-1587. PubMed ID: 28392161 [TBL] [Abstract][Full Text] [Related]
5. Extracellular vesicles for drug delivery. Vader P; Mol EA; Pasterkamp G; Schiffelers RM Adv Drug Deliv Rev; 2016 Nov; 106(Pt A):148-156. PubMed ID: 26928656 [TBL] [Abstract][Full Text] [Related]
6. The Challenges and Possibilities of Extracellular Vesicles as Therapeutic Vehicles. Melling GE; Carollo E; Conlon R; Simpson JC; Carter DRF Eur J Pharm Biopharm; 2019 Nov; 144():50-56. PubMed ID: 31419585 [TBL] [Abstract][Full Text] [Related]
7. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. Kooijmans SAA; Stremersch S; Braeckmans K; de Smedt SC; Hendrix A; Wood MJA; Schiffelers RM; Raemdonck K; Vader P J Control Release; 2013 Nov; 172(1):229-238. PubMed ID: 23994516 [TBL] [Abstract][Full Text] [Related]
8. Preparation and Isolation of siRNA-Loaded Extracellular Vesicles. Vader P; Mäger I; Lee Y; Nordin JZ; Andaloussi SE; Wood MJ Methods Mol Biol; 2017; 1545():197-204. PubMed ID: 27943216 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Loading of Functional miRNA Cargo via pH Gradient Modification of Extracellular Vesicles. Jeyaram A; Lamichhane TN; Wang S; Zou L; Dahal E; Kronstadt SM; Levy D; Parajuli B; Knudsen DR; Chao W; Jay SM Mol Ther; 2020 Mar; 28(3):975-985. PubMed ID: 31911034 [TBL] [Abstract][Full Text] [Related]
10. Extracellular Vesicle Loading Via pH-Gradient Modification. Kronstadt SM; Jay SM; Jeyaram A Methods Mol Biol; 2022; 2504():231-239. PubMed ID: 35467291 [TBL] [Abstract][Full Text] [Related]
11. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. Hung ME; Leonard JN J Extracell Vesicles; 2016; 5():31027. PubMed ID: 27189348 [TBL] [Abstract][Full Text] [Related]
12. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Meng W; He C; Hao Y; Wang L; Li L; Zhu G Drug Deliv; 2020 Dec; 27(1):585-598. PubMed ID: 32264719 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Sork H; Corso G; Krjutskov K; Johansson HJ; Nordin JZ; Wiklander OPB; Lee YXF; Westholm JO; Lehtiö J; Wood MJA; Mäger I; El Andaloussi S Sci Rep; 2018 Jul; 8(1):10813. PubMed ID: 30018314 [TBL] [Abstract][Full Text] [Related]
14. Engineered extracellular vesicles with synthetic lipids via membrane fusion to establish efficient gene delivery. Jhan YY; Prasca-Chamorro D; Palou Zuniga G; Moore DM; Arun Kumar S; Gaharwar AK; Bishop CJ Int J Pharm; 2020 Jan; 573():118802. PubMed ID: 31715354 [TBL] [Abstract][Full Text] [Related]
15. Good things come in small packages: Overcoming challenges to harness extracellular vesicles for therapeutic delivery. Ingato D; Lee JU; Sim SJ; Kwon YJ J Control Release; 2016 Nov; 241():174-185. PubMed ID: 27667180 [TBL] [Abstract][Full Text] [Related]
16. Quantitative and functional characterisation of extracellular vesicles after passive loading with hydrophobic or cholesterol-tagged small molecules. Tréton G; Sayer C; Schürz M; Jaritsch M; Müller A; Matea CT; Stanojlovic V; Melo-Benirschke H; Be C; Krembel C; Rodde S; Haffke M; Hintermann S; Marzinzik A; Ripoche S; Blöchl C; Hollerweger J; Auer D; Cabrele C; Huber CG; Hintersteiner M; Wagner T; Lingel A; Meisner-Kober N J Control Release; 2023 Sep; 361():694-716. PubMed ID: 37567507 [TBL] [Abstract][Full Text] [Related]
17. Functional siRNA Delivery by Extracellular Vesicle-Liposome Hybrid Nanoparticles. Evers MJW; van de Wakker SI; de Groot EM; de Jong OG; Gitz-François JJJ; Seinen CS; Sluijter JPG; Schiffelers RM; Vader P Adv Healthc Mater; 2022 Mar; 11(5):e2101202. PubMed ID: 34382360 [TBL] [Abstract][Full Text] [Related]
18. Loading of Extracellular Vesicles with Hydrophobically Modified siRNAs. Didiot MC; Haraszti RA; Aronin N; Khvorova A Methods Mol Biol; 2018; 1740():199-214. PubMed ID: 29388146 [TBL] [Abstract][Full Text] [Related]
19. Milk-derived Extracellular Vesicles for Therapeutic Delivery of Small Interfering RNAs. Matsuda A; Patel T Methods Mol Biol; 2018; 1740():187-197. PubMed ID: 29388145 [TBL] [Abstract][Full Text] [Related]
20. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution. Silva AM; Lázaro-Ibáñez E; Gunnarsson A; Dhande A; Daaboul G; Peacock B; Osteikoetxea X; Salmond N; Friis KP; Shatnyeva O; Dekker N J Extracell Vesicles; 2021 Aug; 10(10):e12130. PubMed ID: 34377376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]