These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30051500)

  • 1. Exploring the conformational landscapes of HIV protease structural ensembles using principal component analysis.
    Hassan S; Srikakulam SK; Chandramohan Y; Thangam M; Muthukumar S; Gayathri Devi PK; Hanna LE
    Proteins; 2018 Sep; 86(9):990-1000. PubMed ID: 30051500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformations of the HIV-1 protease: A crystal structure data set analysis.
    Palese LL
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1416-1422. PubMed ID: 28846854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis of HIV-1 protease protein binding pockets.
    Ko GM; Reddy AS; Kumar S; Bailey BA; Garg R
    J Chem Inf Model; 2010 Oct; 50(10):1759-71. PubMed ID: 20925403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants.
    Kozísek M; Bray J; Rezácová P; Sasková K; Brynda J; Pokorná J; Mammano F; Rulísek L; Konvalinka J
    J Mol Biol; 2007 Dec; 374(4):1005-16. PubMed ID: 17977555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the mechanism of drug resistance: X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex.
    Liu Z; Yedidi RS; Wang Y; Dewdney TG; Reiter SJ; Brunzelle JS; Kovari IA; Kovari LC
    Biochem Biophys Res Commun; 2013 Feb; 431(2):232-8. PubMed ID: 23313846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of structural stress on the flexibility and adaptability of HIV-1 protease.
    Oehme DP; Wilson DJ; Brownlee RT
    J Chem Inf Model; 2011 May; 51(5):1064-73. PubMed ID: 21500830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting structural effects in HIV-1 protease mutant complexes with flexible ligand docking and protein side-chain optimization.
    Schaffer L; Verkhivker GM
    Proteins; 1998 Nov; 33(2):295-310. PubMed ID: 9779795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Mutations Can Resist Drug Binding yet Keep HIV-1 Protease Functional.
    Appadurai R; Senapati S
    Biochemistry; 2017 Jun; 56(23):2907-2920. PubMed ID: 28505418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between flexibility and positively selected HIV-1 protease mutants against inhibitors.
    Braz AS; Tufanetto P; Perahia D; Scott LP
    Proteins; 2012 Dec; 80(12):2680-91. PubMed ID: 22821809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand modifications to reduce the relative resistance of multi-drug resistant HIV-1 protease.
    Dewdney TG; Wang Y; Liu Z; Sharma SK; Reiter SJ; Brunzelle JS; Kovari IA; Woster PM; Kovari LC
    Bioorg Med Chem; 2013 Dec; 21(23):7430-4. PubMed ID: 24128815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resilience to resistance of HIV-1 protease inhibitors: profile of darunavir.
    Lefebvre E; Schiffer CA
    AIDS Rev; 2008; 10(3):131-42. PubMed ID: 18820715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism.
    Meher BR; Wang Y
    J Mol Graph Model; 2015 Mar; 56():60-73. PubMed ID: 25562662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accessory mutations balance the marginal stability of the HIV-1 protease in drug resistance.
    Weikl TR; Hemmateenejad B
    Proteins; 2020 Mar; 88(3):476-484. PubMed ID: 31599014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational variation of an extreme drug resistant mutant of HIV protease.
    Shen CH; Chang YC; Agniswamy J; Harrison RW; Weber IT
    J Mol Graph Model; 2015 Nov; 62():87-96. PubMed ID: 26397743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Wide-open" 1.3 A structure of a multidrug-resistant HIV-1 protease as a drug target.
    Martin P; Vickrey JF; Proteasa G; Jimenez YL; Wawrzak Z; Winters MA; Merigan TC; Kovari LC
    Structure; 2005 Dec; 13(12):1887-95. PubMed ID: 16338417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.