These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 30051561)
41. Biochar alters microbial community and carbon sequestration potential across different soil pH. Sheng Y; Zhu L Sci Total Environ; 2018 May; 622-623():1391-1399. PubMed ID: 29890604 [TBL] [Abstract][Full Text] [Related]
42. Not all soil carbon is created equal: Labile and stable pools under nitrogen input. Zang H; Mehmood I; Kuzyakov Y; Jia R; Gui H; Blagodatskaya E; Xu X; Smith P; Chen H; Zeng Z; Fan M Glob Chang Biol; 2024 Jul; 30(7):e17405. PubMed ID: 38973563 [TBL] [Abstract][Full Text] [Related]
43. Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Melillo JM; Butler S; Johnson J; Mohan J; Steudler P; Lux H; Burrows E; Bowles F; Smith R; Scott L; Vario C; Hill T; Burton A; Zhou YM; Tang J Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9508-12. PubMed ID: 21606374 [TBL] [Abstract][Full Text] [Related]
44. Distribution of Prokaryotic Abundance and Microbial Nutrient Cycling Across a High-Alpine Altitudinal Gradient in the Austrian Central Alps is Affected by Vegetation, Temperature, and Soil Nutrients. Hofmann K; Lamprecht A; Pauli H; Illmer P Microb Ecol; 2016 Oct; 72(3):704-16. PubMed ID: 27401822 [TBL] [Abstract][Full Text] [Related]
45. Fungi benefit from two decades of increased nutrient availability in tundra heath soil. Rinnan R; Michelsen A; Bååth E PLoS One; 2013; 8(2):e56532. PubMed ID: 23437159 [TBL] [Abstract][Full Text] [Related]
46. Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake. Jonasson S; Michelsen A; Schmidt IK; Nielsen EV; Callaghan TV Oecologia; 1996 Jun; 106(4):507-515. PubMed ID: 28307451 [TBL] [Abstract][Full Text] [Related]
48. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Gulis V; Suberkropp K Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584 [TBL] [Abstract][Full Text] [Related]
49. Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients. Li F; Peng Y; Natali SM; Chen K; Han T; Yang G; Ding J; Zhang D; Wang G; Wang J; Yu J; Liu F; Yang Y Ecology; 2017 Nov; 98(11):2851-2859. PubMed ID: 28766706 [TBL] [Abstract][Full Text] [Related]
50. Nitrogen regulation of the climate-carbon feedback: evidence from a long-term global change experiment. Niu S; Sherry RA; Zhou X; Wan S; Luo Y Ecology; 2010 Nov; 91(11):3261-73. PubMed ID: 21141187 [TBL] [Abstract][Full Text] [Related]
51. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China's terrestrial ecosystems. Tang Z; Xu W; Zhou G; Bai Y; Li J; Tang X; Chen D; Liu Q; Ma W; Xiong G; He H; He N; Guo Y; Guo Q; Zhu J; Han W; Hu H; Fang J; Xie Z Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4033-4038. PubMed ID: 29666316 [TBL] [Abstract][Full Text] [Related]
52. Different effects of plant-derived dissolved organic matter (DOM) and urea on the priming of soil organic carbon. Qiu Q; Wu L; Ouyang Z; Li B; Xu Y Environ Sci Process Impacts; 2016 Mar; 18(3):330-41. PubMed ID: 26791412 [TBL] [Abstract][Full Text] [Related]
53. Environmental drivers of carbon and nitrogen isotopic signatures in peatland vascular plants along an altitude gradient. Gavazov K; Hagedorn F; Buttler A; Siegwolf R; Bragazza L Oecologia; 2016 Jan; 180(1):257-64. PubMed ID: 26433961 [TBL] [Abstract][Full Text] [Related]
54. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration. Chen J; Luo Y; García-Palacios P; Cao J; Dacal M; Zhou X; Li J; Xia J; Niu S; Yang H; Shelton S; Guo W; van Groenigen KJ Glob Chang Biol; 2018 Oct; 24(10):4816-4826. PubMed ID: 29999577 [TBL] [Abstract][Full Text] [Related]
55. Limiting Resources Define the Global Pattern of Soil Microbial Carbon Use Efficiency. Cui Y; Hu J; Peng S; Delgado-Baquerizo M; Moorhead DL; Sinsabaugh RL; Xu X; Geyer KM; Fang L; Smith P; Peñuelas J; Kuzyakov Y; Chen J Adv Sci (Weinh); 2024 Sep; 11(35):e2308176. PubMed ID: 39024521 [TBL] [Abstract][Full Text] [Related]
56. Reduced carbon use efficiency and increased microbial turnover with soil warming. Li J; Wang G; Mayes MA; Allison SD; Frey SD; Shi Z; Hu XM; Luo Y; Melillo JM Glob Chang Biol; 2019 Mar; 25(3):900-910. PubMed ID: 30417564 [TBL] [Abstract][Full Text] [Related]
57. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Chen R; Senbayram M; Blagodatsky S; Myachina O; Dittert K; Lin X; Blagodatskaya E; Kuzyakov Y Glob Chang Biol; 2014 Jul; 20(7):2356-67. PubMed ID: 24273056 [TBL] [Abstract][Full Text] [Related]
58. [Effects of Reclamation on Soil Nutrients and Microbial Activities in the Huixian Karst Wetland in Guilin]. Huang KC; Shen YY; Xu GP; Huang YQ; Zhang DN; Sun YJ; Li YQ; He W; Zhou LW Huan Jing Ke Xue; 2018 Apr; 39(4):1813-1823. PubMed ID: 29965008 [TBL] [Abstract][Full Text] [Related]
59. Potential effect of warming on soil microbial nutrient limitations as determined by enzymatic stoichiometry in the farmland from different climate zones. Li H; Tian H; Wang Z; Liu C; Nurzhan A; Megharaj M; He W Sci Total Environ; 2022 Jan; 802():149657. PubMed ID: 34464797 [TBL] [Abstract][Full Text] [Related]