These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30051568)

  • 21. The HEX1 gene of Fusarium graminearum is required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearum virus 1.
    Son M; Lee KM; Yu J; Kang M; Park JM; Kwon SJ; Kim KH
    J Virol; 2013 Sep; 87(18):10356-67. PubMed ID: 23864619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum.
    Wang Y; Liu W; Hou Z; Wang C; Zhou X; Jonkers W; Ding S; Kistler HC; Xu JR
    Mol Plant Microbe Interact; 2011 Jan; 24(1):118-28. PubMed ID: 20795857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleoside Diphosphate Kinase FgNdpk Is Required for DON Production and Pathogenicity by Regulating the Growth and Toxisome Formation of
    Mao X; Li L; Abubakar YS; Li Y; Luo Z; Chen M; Zheng W; Wang Z; Zheng H
    J Agric Food Chem; 2024 May; 72(17):9637-9646. PubMed ID: 38642053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. System-wide characterization of subtilases reveals that subtilisin-like protease FgPrb1 of Fusarium graminearum regulates fungal development and virulence.
    Xu L; Wang H; Zhang C; Wang J; Chen A; Chen Y; Ma Z
    Fungal Genet Biol; 2020 Nov; 144():103449. PubMed ID: 32890707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional characterization of Rho family small GTPases in Fusarium graminearum.
    Zhang C; Wang Y; Wang J; Zhai Z; Zhang L; Zheng W; Zheng W; Yu W; Zhou J; Lu G; Shim WB; Wang Z
    Fungal Genet Biol; 2013 Dec; 61():90-9. PubMed ID: 24055721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum.
    Jiang H; Xia A; Ye M; Ren J; Li D; Liu H; Wang Q; Lu P; Wu C; Xu JR; Jiang C
    PLoS Genet; 2020 Nov; 16(11):e1009185. PubMed ID: 33137093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The t-SNARE protein FgPep12, associated with FgVam7, is essential for ascospore discharge and plant infection by trafficking Ca2+ ATPase FgNeo1 between Golgi and endosome/vacuole in Fusarium graminearum.
    Li B; Dong X; Zhao R; Kou R; Zheng X; Zhang H
    PLoS Pathog; 2019 May; 15(5):e1007754. PubMed ID: 31067272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Fusarium graminearum Mes1 reveals roles in cell-surface organization and virulence.
    Rittenour WR; Harris SD
    Fungal Genet Biol; 2008 Jun; 45(6):933-46. PubMed ID: 18339563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FgPal1 regulates morphogenesis and pathogenesis in Fusarium graminearum.
    Yin J; Hao C; Niu G; Wang W; Wang G; Xiang P; Xu JR; Zhang X
    Environ Microbiol; 2020 Dec; 22(12):5373-5386. PubMed ID: 33000483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional characterization of FgERG3 and FgERG5 associated with ergosterol biosynthesis, vegetative differentiation and virulence of Fusarium graminearum.
    Yun Y; Yin D; Dawood DH; Liu X; Chen Y; Ma Z
    Fungal Genet Biol; 2014 Jul; 68():60-70. PubMed ID: 24785759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Activators of Type 2A Phosphatases (PP2A) Regulate Multiple Cellular Processes Via PP2A-Dependent and -Independent Mechanisms in Fusarium graminearum.
    Liu Z; Liu N; Jiang H; Yan L; Ma Z; Yin Y
    Mol Plant Microbe Interact; 2018 Nov; 31(11):1121-1133. PubMed ID: 29877164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FgSec2A, a guanine nucleotide exchange factor of FgRab8, is important for polarized growth, pathogenicity and deoxynivalenol production in Fusarium graminearum.
    Zheng H; Li L; Miao P; Wu C; Chen X; Yuan M; Fang T; Norvienyeku J; Li G; Zheng W; Wang Z; Zhou J
    Environ Microbiol; 2018 Sep; 20(9):3378-3392. PubMed ID: 30105886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of a dihydrodipicolinate synthase gene (FaDHDPS1) in fungal development, pathogenesis and stress responses in Fusarium asiaticum.
    Ren W; Tao J; Shi D; Chen W; Chen C
    BMC Microbiol; 2018 Oct; 18(1):128. PubMed ID: 30290767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conservation in budding yeast of a kinase specific for SR splicing factors.
    Siebel CW; Feng L; Guthrie C; Fu XD
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5440-5. PubMed ID: 10318902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EBR1, a novel Zn(2)Cys(6) transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum.
    Zhao C; Waalwijk C; de Wit PJ; van der Lee T; Tang D
    Mol Plant Microbe Interact; 2011 Dec; 24(12):1407-18. PubMed ID: 21830952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FgKin1 kinase localizes to the septal pore and plays a role in hyphal growth, ascospore germination, pathogenesis, and localization of Tub1 beta-tubulins in Fusarium graminearum.
    Luo Y; Zhang H; Qi L; Zhang S; Zhou X; Zhang Y; Xu JR
    New Phytol; 2014 Dec; 204(4):943-54. PubMed ID: 25078365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum.
    Lee J; Myong K; Kim JE; Kim HK; Yun SH; Lee YW
    Microbiology (Reading); 2012 Jul; 158(Pt 7):1723-1733. PubMed ID: 22516221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection.
    Hou Z; Xue C; Peng Y; Katan T; Kistler HC; Xu JR
    Mol Plant Microbe Interact; 2002 Nov; 15(11):1119-27. PubMed ID: 12423017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FpDep1, a component of Rpd3L histone deacetylase complex, is important for vegetative development, ROS accumulation, and pathogenesis in Fusarium pseudograminearum.
    Zhang Y; Wang L; Liang S; Zhang P; Kang R; Zhang M; Wang M; Chen L; Yuan H; Ding S; Li H
    Fungal Genet Biol; 2020 Feb; 135():103299. PubMed ID: 31706014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The phospholipase C (FgPLC1) is involved in regulation of development, pathogenicity, and stress responses in Fusarium graminearum.
    Zhu Q; Sun L; Lian J; Gao X; Zhao L; Ding M; Li J; Liang Y
    Fungal Genet Biol; 2016 Dec; 97():1-9. PubMed ID: 27777035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.