These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30051568)

  • 41. Expression of a Structural Protein of the Mycovirus FgV-ch9 Negatively Affects the Transcript Level of a Novel Symptom Alleviation Factor and Causes Virus Infection-Like Symptoms in Fusarium graminearum.
    Bormann J; Heinze C; Blum C; Mentges M; Brockmann A; Alder A; Landt SK; Josephson B; Indenbirken D; Spohn M; Plitzko B; Loesgen S; Freitag M; Schäfer W
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899100
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential roles of three FgPLD genes in regulating development and pathogenicity in Fusarium graminearum.
    Ding M; Zhu Q; Liang Y; Li J; Fan X; Yu X; He F; Xu H; Liang Y; Yu J
    Fungal Genet Biol; 2017 Dec; 109():46-52. PubMed ID: 29079075
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fusarium graminearum from expression analysis to functional assays.
    Hallen-Adams HE; Cavinder BL; Trail F
    Methods Mol Biol; 2011; 722():79-101. PubMed ID: 21590414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional analysis of the Fusarium graminearum phosphatome.
    Yun Y; Liu Z; Yin Y; Jiang J; Chen Y; Xu JR; Ma Z
    New Phytol; 2015 Jul; 207(1):119-134. PubMed ID: 25758923
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum.
    Lu S; Edwards MC
    Phytopathology; 2018 Apr; 108(4):510-520. PubMed ID: 29117786
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RNA editing of the AMD1 gene is important for ascus maturation and ascospore discharge in Fusarium graminearum.
    Cao S; He Y; Hao C; Xu Y; Zhang H; Wang C; Liu H; Xu JR
    Sci Rep; 2017 Jul; 7(1):4617. PubMed ID: 28676631
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways.
    Yun Y; Liu Z; Zhang J; Shim WB; Chen Y; Ma Z
    Environ Microbiol; 2014 Jul; 16(7):2023-37. PubMed ID: 24237706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Type II myosin gene in Fusarium graminearum is required for septation, development, mycotoxin biosynthesis and pathogenicity.
    Song B; Li HP; Zhang JB; Wang JH; Gong AD; Song XS; Chen T; Liao YC
    Fungal Genet Biol; 2013 May; 54():60-70. PubMed ID: 23507542
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sexual specific functions of Tub1 beta-tubulins require stage-specific RNA processing and expression in Fusarium graminearum.
    Chen D; Wu C; Hao C; Huang P; Liu H; Bian Z; Xu JR
    Environ Microbiol; 2018 Nov; 20(11):4009-4021. PubMed ID: 30307105
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides.
    Zhang Y; Choi YE; Zou X; Xu JR
    Fungal Genet Biol; 2011 Feb; 48(2):71-9. PubMed ID: 20887797
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Fusarium Graminearum virulence factor FGL targets an FKBP12 immunophilin of wheat.
    Niu XW; Zheng ZY; Feng YG; Guo WZ; Wang XY
    Gene; 2013 Aug; 525(1):77-83. PubMed ID: 23648486
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ESCRT-III accessory proteins regulate fungal development and plant infection in Fusarium graminearum.
    Xie Q; Chen A; Zhang Y; Zhang C; Hu Y; Luo Z; Wang B; Yun Y; Zhou J; Li G; Wang Z
    Curr Genet; 2019 Aug; 65(4):1041-1055. PubMed ID: 30927052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The type II phosphoinositide 4-kinase FgLsb6 is important for the development and virulence of Fusarium graminearum.
    Chen L; Zhang L; Mei X; Wang C; Guo Z; Li L; Li B; Liang Y; Zou S; Dong H
    Fungal Genet Biol; 2020 Nov; 144():103443. PubMed ID: 32800918
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum.
    Yang P; Chen Y; Wu H; Fang W; Liang Q; Zheng Y; Olsson S; Zhang D; Zhou J; Wang Z; Zheng W
    Curr Genet; 2018 Feb; 64(1):285-301. PubMed ID: 28918485
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum.
    Lee Y; Min K; Son H; Park AR; Kim JC; Choi GJ; Lee YW
    Mol Plant Microbe Interact; 2014 Dec; 27(12):1344-55. PubMed ID: 25083910
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum.
    Qin J; Wang G; Jiang C; Xu JR; Wang C
    Sci Rep; 2015 Feb; 5():8504. PubMed ID: 25703795
    [TBL] [Abstract][Full Text] [Related]  

  • 57. FgNoxR, a regulatory subunit of NADPH oxidases, is required for female fertility and pathogenicity in Fusarium graminearum.
    Zhang C; Lin Y; Wang J; Wang Y; Chen M; Norvienyeku J; Li G; Yu W; Wang Z
    FEMS Microbiol Lett; 2016 Jan; 363(1):fnv223. PubMed ID: 26607286
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Histone H3 lysine 9 methyltransferase FvDim5 regulates fungal development, pathogenicity and osmotic stress responses in Fusarium verticillioides.
    Gu Q; Ji T; Sun X; Huang H; Zhang H; Lu X; Wu L; Huo R; Wu H; Gao X
    FEMS Microbiol Lett; 2017 Oct; 364(19):. PubMed ID: 28957455
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus Fusarium graminearum.
    Shin JY; Bui DC; Lee Y; Nam H; Jung S; Fang M; Kim JC; Lee T; Kim H; Choi GJ; Son H; Lee YW
    Environ Microbiol; 2017 May; 19(5):2053-2067. PubMed ID: 28296081
    [TBL] [Abstract][Full Text] [Related]  

  • 60. FgBUD14 is important for ascosporogenesis and involves both stage-specific alternative splicing and RNA editing during sexual reproduction.
    Liang J; Fu X; Hao C; Bian Z; Liu H; Xu JR; Wang G
    Environ Microbiol; 2021 Sep; 23(9):5052-5068. PubMed ID: 33645871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.