BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 30051586)

  • 1. Expanding the base editing scope in rice by using Cas9 variants.
    Hua K; Tao X; Zhu JK
    Plant Biotechnol J; 2019 Feb; 17(2):499-504. PubMed ID: 30051586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K; Tao X; Han P; Wang R; Zhu JK
    Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An adenine base editor with expanded targeting scope using SpCas9-NGv1 in rice.
    Negishi K; Kaya H; Abe K; Hara N; Saika H; Toki S
    Plant Biotechnol J; 2019 Aug; 17(8):1476-1478. PubMed ID: 30959555
    [No Abstract]   [Full Text] [Related]  

  • 5. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants.
    Li J; Xu R; Qin R; Liu X; Kong F; Wei P
    Mol Plant; 2021 Feb; 14(2):352-360. PubMed ID: 33383203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simplified adenine base editors improve adenine base editing efficiency in rice.
    Hua K; Tao X; Liang W; Zhang Z; Gou R; Zhu JK
    Plant Biotechnol J; 2020 Mar; 18(3):770-778. PubMed ID: 31469505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice.
    Xu W; Song W; Yang Y; Wu Y; Lv X; Yuan S; Liu Y; Yang J
    BMC Plant Biol; 2019 Nov; 19(1):511. PubMed ID: 31752697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors.
    Huang TP; Zhao KT; Miller SM; Gaudelli NM; Oakes BL; Fellmann C; Savage DF; Liu DR
    Nat Biotechnol; 2019 Jun; 37(6):626-631. PubMed ID: 31110355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato.
    Veillet F; Kermarrec MP; Chauvin L; Chauvin JE; Nogué F
    PLoS One; 2020; 15(8):e0235942. PubMed ID: 32804931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationally engineered
    Tan Y; Chu AHY; Bao S; Hoang DA; Kebede FT; Xiong W; Ji M; Shi J; Zheng Z
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20969-20976. PubMed ID: 31570596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAM-less plant genome editing using a CRISPR-SpRY toolbox.
    Ren Q; Sretenovic S; Liu S; Tang X; Huang L; He Y; Liu L; Guo Y; Zhong Z; Liu G; Cheng Y; Zheng X; Pan C; Yin D; Zhang Y; Li W; Qi L; Li C; Qi Y; Zhang Y
    Nat Plants; 2021 Jan; 7(1):25-33. PubMed ID: 33398158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base editing in rice: current progress, advances, limitations, and future perspectives.
    Yarra R; Sahoo L
    Plant Cell Rep; 2021 Apr; 40(4):595-604. PubMed ID: 33423074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Sc
    Ma G; Kuang Y; Lu Z; Li X; Xu Z; Ren B; Zhou X; Zhou H
    J Integr Plant Biol; 2021 Sep; 63(9):1606-1610. PubMed ID: 34427973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision genome engineering through adenine and cytosine base editing.
    Kim JS
    Nat Plants; 2018 Mar; 4(3):148-151. PubMed ID: 29483683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base-Editing-Mediated Artificial Evolution of OsALS1 In Planta to Develop Novel Herbicide-Tolerant Rice Germplasms.
    Kuang Y; Li S; Ren B; Yan F; Spetz C; Li X; Zhou X; Zhou H
    Mol Plant; 2020 Apr; 13(4):565-572. PubMed ID: 32001363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior Fidelity and Distinct Editing Outcomes of SaCas9 Compared with SpCas9 in Genome Editing.
    Yang ZX; Fu YW; Zhao JJ; Zhang F; Li SA; Zhao M; Wen W; Zhang L; Cheng T; Zhang JP; Zhang XB
    Genomics Proteomics Bioinformatics; 2023 Dec; 21(6):1206-1220. PubMed ID: 36549468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants.
    Tan J; Zeng D; Zhao Y; Wang Y; Liu T; Li S; Xue Y; Luo Y; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2022 May; 20(5):934-943. PubMed ID: 34984801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes.
    Liu X; Zhou X; Li G; Huang S; Sun W; Sun Q; Li L; Huang X; Liu J; Wang L
    CRISPR J; 2021 Oct; 4(5):710-727. PubMed ID: 34661426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.