BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 30051601)

  • 1. Chemistry-driven Hit-to-lead Optimization Guided by Structure-based Approaches.
    Hoffer L; Muller C; Roche P; Morelli X
    Mol Inform; 2018 Sep; 37(9-10):e1800059. PubMed ID: 30051601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery.
    Heifetz A; Southey M; Morao I; Townsend-Nicholson A; Bodkin MJ
    Methods Mol Biol; 2018; 1705():375-394. PubMed ID: 29188574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Docking and Virtual Screening in Drug Discovery.
    Kontoyianni M
    Methods Mol Biol; 2017; 1647():255-266. PubMed ID: 28809009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment based drug design: from experimental to computational approaches.
    Kumar A; Voet A; Zhang KY
    Curr Med Chem; 2012; 19(30):5128-47. PubMed ID: 22934764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment-based drug discovery and molecular docking in drug design.
    Wang T; Wu MB; Chen ZJ; Chen H; Lin JP; Yang LR
    Curr Pharm Biotechnol; 2015; 16(1):11-25. PubMed ID: 25420726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fragment-based drug discovery: concept and aim].
    Tanaka D
    Yakugaku Zasshi; 2010 Mar; 130(3):315-23. PubMed ID: 20190516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Computational chemistry in structure-based drug design].
    Cao R; Li W; Sun HZ; Zhou Y; Huang N
    Yao Xue Xue Bao; 2013 Jul; 48(7):1041-52. PubMed ID: 24133970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-silico guided discovery of novel CCR9 antagonists.
    Zhang X; Cross JB; Romero J; Heifetz A; Humphries E; Hall K; Wu Y; Stucka S; Zhang J; Chandonnet H; Lippa B; Ryan MD; Baber JC
    J Comput Aided Mol Des; 2018 Apr; 32(4):573-582. PubMed ID: 29582229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery and Development of ATP-Competitive mTOR Inhibitors Using Computational Approaches.
    Luo Y; Wang L
    Curr Pharm Des; 2017 Nov; 23(29):4321-4331. PubMed ID: 28699534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in structure-based drug design and virtual screening of VEGFR tyrosine kinase inhibitors.
    Hoi PM; Li S; Vong CT; Tseng HH; Kwan YW; Lee SM
    Methods; 2015 Jan; 71():85-91. PubMed ID: 25239735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment-based drug design: computational & experimental state of the art.
    Hoffer L; Renaud JP; Horvath D
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):500-20. PubMed ID: 21521152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Identification of Potential Drug Candidates from Multi-Million Compounds' Repositories. Combination of 2D Similarity Search with 3D Ligand/Structure Based Methods and In Vitro Screening.
    Szilágyi K; Flachner B; Hajdú I; Szaszkó M; Dobi K; Lőrincz Z; Cseh S; Dormán G
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space.
    Rudling A; Gustafsson R; Almlöf I; Homan E; Scobie M; Warpman Berglund U; Helleday T; Stenmark P; Carlsson J
    J Med Chem; 2017 Oct; 60(19):8160-8169. PubMed ID: 28929756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational drug discovery.
    Ou-Yang SS; Lu JY; Kong XQ; Liang ZJ; Luo C; Jiang H
    Acta Pharmacol Sin; 2012 Sep; 33(9):1131-40. PubMed ID: 22922346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Protein Structure to Small-Molecules: Recent Advances and Applications to Fragment-Based Drug Discovery.
    Ferreira LG; Andricopulo AD
    Curr Top Med Chem; 2017; 17(20):2260-2270. PubMed ID: 28240184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery.
    Gozalbes R; Carbajo RJ; Pineda-Lucena A
    Curr Med Chem; 2010; 17(17):1769-94. PubMed ID: 20345344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harmonization of QSAR Best Practices and Molecular Docking Provides an Efficient Virtual Screening Tool for Discovering New G-Quadruplex Ligands.
    Castillo-González D; Mergny JL; De Rache A; Pérez-Machado G; Cabrera-Pérez MA; Nicolotti O; Introcaso A; Mangiatordi GF; Guédin A; Bourdoncle A; Garrigues T; Pallardó F; Cordeiro MN; Paz-Y-Miño C; Tejera E; Borges F; Cruz-Monteagudo M
    J Chem Inf Model; 2015 Oct; 55(10):2094-110. PubMed ID: 26355653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(4):764-779. PubMed ID: 27685895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modern drug discovery technologies: opportunities and challenges in lead discovery.
    Guido RV; Oliva G; Andricopulo AD
    Comb Chem High Throughput Screen; 2011 Dec; 14(10):830-9. PubMed ID: 21843147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational approaches for drug discovery.
    Hung CL; Chen CC
    Drug Dev Res; 2014 Sep; 75(6):412-8. PubMed ID: 25195585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.