BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30051613)

  • 1. Oxylipin dynamics in Medicago truncatula in response to salt and wounding stresses.
    De Domenico S; Taurino M; Gallo A; Poltronieri P; Pastor V; Flors V; Santino A
    Physiol Plant; 2019 Feb; 165(2):198-208. PubMed ID: 30051613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Aldo-Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in
    Yu J; Sun H; Zhang J; Hou Y; Zhang T; Kang J; Wang Z; Yang Q; Long R
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31979344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Identification and Analyses of Drought/Salt-Responsive Cytochrome
    Xia Y; Yang J; Ma L; Yan S; Pang Y
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses.
    Li D; Zhang Y; Hu X; Shen X; Ma L; Su Z; Wang T; Dong J
    BMC Plant Biol; 2011 Jul; 11():109. PubMed ID: 21718548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Identification and Expression Profiling Analysis of the Trihelix Gene Family Under Abiotic Stresses in
    Liu X; Zhang H; Ma L; Wang Z; Wang K
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33238556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An expression database for roots of the model legume Medicago truncatula under salt stress.
    Li D; Su Z; Dong J; Wang T
    BMC Genomics; 2009 Nov; 10():517. PubMed ID: 19906315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative oxidase 1 (Aox1) gene expression in roots of Medicago truncatula is a genotype-specific component of salt stress tolerance.
    Mhadhbi H; Fotopoulos V; Mylona PV; Jebara M; Aouani ME; Polidoros AN
    J Plant Physiol; 2013 Jan; 170(1):111-4. PubMed ID: 23079242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress.
    de Lorenzo L; Merchan F; Laporte P; Thompson R; Clarke J; Sousa C; Crespi M
    Plant Cell; 2009 Feb; 21(2):668-80. PubMed ID: 19244136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence.
    de Zélicourt A; Diet A; Marion J; Laffont C; Ariel F; Moison M; Zahaf O; Crespi M; Gruber V; Frugier F
    Plant J; 2012 Apr; 70(2):220-30. PubMed ID: 22098255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice.
    Kurotani K; Hayashi K; Hatanaka S; Toda Y; Ogawa D; Ichikawa H; Ishimaru Y; Tashita R; Suzuki T; Ueda M; Hattori T; Takeda S
    Plant Cell Physiol; 2015 Apr; 56(4):779-89. PubMed ID: 25637374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108.
    Wang TZ; Tian QY; Wang BL; Zhao MG; Zhang WH
    BMC Plant Biol; 2014 May; 14():122. PubMed ID: 24885873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula.
    Gruber V; Blanchet S; Diet A; Zahaf O; Boualem A; Kakar K; Alunni B; Udvardi M; Frugier F; Crespi M
    Mol Genet Genomics; 2009 Jan; 281(1):55-66. PubMed ID: 18987888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a group of XTHs genes responding to heavy metal mercury, salinity and drought stresses in Medicago truncatula.
    Xuan Y; Zhou ZS; Li HB; Yang ZM
    Ecotoxicol Environ Saf; 2016 Oct; 132():153-63. PubMed ID: 27318197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing.
    Wang TZ; Liu M; Zhao MG; Chen R; Zhang WH
    BMC Plant Biol; 2015 Jun; 15():131. PubMed ID: 26048392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules.
    Hanks JN; Snyder AK; Graham MA; Shah RK; Blaylock LA; Harrison MJ; Shah DM
    Plant Mol Biol; 2005 Jun; 58(3):385-99. PubMed ID: 16021402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Characterization of Abiotic Stress-Responsive NF-YB Family Genes in
    Du W; Yang J; Li Q; He C; Pang Y
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive identification and characterization of abiotic stress and hormone responsive glycosyl hydrolase family 1 genes in Medicago truncatula.
    Yang J; Ma L; Jiang W; Yao Y; Tang Y; Pang Y
    Plant Physiol Biochem; 2021 Jan; 158():21-33. PubMed ID: 33291052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula.
    Merchan F; de Lorenzo L; Rizzo SG; Niebel A; Manyani H; Frugier F; Sousa C; Crespi M
    Plant J; 2007 Jul; 51(1):1-17. PubMed ID: 17488237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses.
    Behr M; Legay S; Hausman JF; Guerriero G
    Int J Mol Sci; 2015 Jul; 16(7):16104-24. PubMed ID: 26193255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of a functional flavanone-3ß-hydroxylase gene from Medicago truncatula.
    Shen X; Martens S; Chen M; Li D; Dong J; Wang T
    Mol Biol Rep; 2010 Oct; 37(7):3283-9. PubMed ID: 19888675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.