These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 30051748)
1. Prediction of matrix metal proteinases-12 inhibitors by machine learning approaches. Li B; Hu L; Xue Y; Yang M; Huang L; Zhang Z; Liu J; Deng G J Biomol Struct Dyn; 2019 Jul; 37(10):2627-2640. PubMed ID: 30051748 [TBL] [Abstract][Full Text] [Related]
2. Predicting Inhibitors for Multidrug Resistance Associated Protein-2 Transporter by Machine Learning Approach. Kharangarh S; Sandhu H; Tangadpalliwar S; Garg P Comb Chem High Throughput Screen; 2018; 21(8):557-566. PubMed ID: 30360705 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning Models Combined with Virtual Screening and Molecular Docking to Predict Human Topoisomerase I Inhibitors. Li B; Kang X; Zhao D; Zou Y; Huang X; Wang J; Zhang C Molecules; 2019 Jun; 24(11):. PubMed ID: 31167344 [TBL] [Abstract][Full Text] [Related]
4. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods. Lv W; Xue Y Eur J Med Chem; 2010 Mar; 45(3):1167-72. PubMed ID: 20053484 [TBL] [Abstract][Full Text] [Related]
5. In silico Prediction of Inhibitory Constant of Thrombin Inhibitors Using Machine Learning. Zhao J; Zhu L; Zhou W; Yin L; Wang Y; Fan Y; Chen Y; Liu H Comb Chem High Throughput Screen; 2018; 21(9):662-669. PubMed ID: 30569853 [TBL] [Abstract][Full Text] [Related]
6. Prediction of antibacterial compounds by machine learning approaches. Yang XG; Chen D; Wang M; Xue Y; Chen YZ J Comput Chem; 2009 Jun; 30(8):1202-11. PubMed ID: 18988254 [TBL] [Abstract][Full Text] [Related]
7. In silico study combining docking and QSAR methods on a series of matrix metalloproteinase 13 inhibitors. Xi L; Li S; Yao X; Wei Y; Li J; Liu H; Wu X Arch Pharm (Weinheim); 2014 Nov; 347(11):825-33. PubMed ID: 25363411 [TBL] [Abstract][Full Text] [Related]
8. Prediction of factor Xa inhibitors by machine learning methods. Lin HH; Han LY; Yap CW; Xue Y; Liu XH; Zhu F; Chen YZ J Mol Graph Model; 2007 Sep; 26(2):505-18. PubMed ID: 17418603 [TBL] [Abstract][Full Text] [Related]
9. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery. Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717 [TBL] [Abstract][Full Text] [Related]
10. Study of Structure-active Relationship for Inhibitors of HIV-1 Integrase LEDGF/p75 Interaction by Machine Learning Methods. Li Y; Wu Y; Yan A Mol Inform; 2017 Jul; 36(7):. PubMed ID: 28244220 [TBL] [Abstract][Full Text] [Related]
11. A Machine Learning-Based QSAR Model for Benzimidazole Derivatives as Corrosion Inhibitors by Incorporating Comprehensive Feature Selection. Liu Y; Guo Y; Wu W; Xiong Y; Sun C; Yuan L; Li M Interdiscip Sci; 2019 Dec; 11(4):738-747. PubMed ID: 31486019 [TBL] [Abstract][Full Text] [Related]
12. In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method. Li BK; Cong Y; Yang XG; Xue Y; Chen YZ Comput Biol Med; 2013 May; 43(4):395-404. PubMed ID: 23402937 [TBL] [Abstract][Full Text] [Related]
13. Prediction of novel and selective TNF-alpha converting enzyme (TACE) inhibitors and characterization of correlative molecular descriptors by machine learning approaches. Cong Y; Yang XG; Lv W; Xue Y J Mol Graph Model; 2009 Oct; 28(3):236-44. PubMed ID: 19729328 [TBL] [Abstract][Full Text] [Related]
14. An integrated structure- and pharmacophore-based MMP-12 virtual screening. Ramezani M; Shamsara J Mol Divers; 2018 May; 22(2):383-395. PubMed ID: 29423648 [TBL] [Abstract][Full Text] [Related]
15. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach. Niu AQ; Xie LJ; Wang H; Zhu B; Wang SQ Drug Des Devel Ther; 2016; 10():2323-31. PubMed ID: 27486309 [TBL] [Abstract][Full Text] [Related]
16. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity. Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388 [TBL] [Abstract][Full Text] [Related]
17. Machine learning and biological evaluation-based identification of a potential MMP-9 inhibitor, effective against ovarian cancer cells SKOV3. Sinha K; Parwez S; Mv S; Yadav A; Siddiqi MI; Banerjee D J Biomol Struct Dyn; 2024 Aug; 42(13):6823-6841. PubMed ID: 37504963 [TBL] [Abstract][Full Text] [Related]
18. AndroPred: an artificial intelligence-based model for predicting androgen receptor inhibitors. Gagare R; Sharma A; Garg P J Biomol Struct Dyn; 2024 Sep; 42(14):7340-7348. PubMed ID: 37493402 [TBL] [Abstract][Full Text] [Related]
19. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Vasanthanathan P; Taboureau O; Oostenbrink C; Vermeulen NP; Olsen L; Jørgensen FS Drug Metab Dispos; 2009 Mar; 37(3):658-64. PubMed ID: 19056915 [TBL] [Abstract][Full Text] [Related]
20. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches. Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]