These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30051888)

  • 1. Confinement of Dirac electrons in graphene magnetic quantum dots.
    Kuru Ş; Negro J; Sourrouille L
    J Phys Condens Matter; 2018 Sep; 30(36):365502. PubMed ID: 30051888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semirelativity in semiconductors: a review.
    Zawadzki W
    J Phys Condens Matter; 2017 Sep; 29(37):373004. PubMed ID: 28608783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dirac electrons in graphene-based quantum wires and quantum dots.
    Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM
    J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar Dirac electrons in magnetic quantum dots.
    Yang N; Zhu JL
    J Phys Condens Matter; 2012 May; 24(21):215303. PubMed ID: 22543306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the energy spectrum of graphene quantum dot with external magnetic and Aharonov-Bohm flux fields.
    Serrano Orozco FA; Avalos Ochoa JG; Rivas XC; Cuevas Figueroa JL; Carrada HMM
    Heliyon; 2019 Aug; 5(8):e02224. PubMed ID: 31440591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fock-Darwin states of dirac electrons in graphene-based artificial atoms.
    Chen HY; Apalkov V; Chakraborty T
    Phys Rev Lett; 2007 May; 98(18):186803. PubMed ID: 17501593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport through graphene quantum dots.
    Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K
    Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic confinement of massless Dirac fermions in graphene.
    De Martino A; Dell'Anna L; Egger R
    Phys Rev Lett; 2007 Feb; 98(6):066802. PubMed ID: 17358966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of electric field influence on the quantum wells with different boundary conditions.: I. Energy spectrum, quantum information entropy and polarization.
    Olendski O
    Ann Phys; 2015 Apr; 527(3-4):278-295. PubMed ID: 25914413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical phase boundaries of static and periodically kicked long-range Kitaev chain.
    Bhattacharya U; Maity S; Dutta A; Sen D
    J Phys Condens Matter; 2019 May; 31(17):174003. PubMed ID: 30703763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic field induced confinement-deconfinement transition in graphene quantum dots.
    Giavaras G; Maksym PA; Roy M
    J Phys Condens Matter; 2009 Mar; 21(10):102201. PubMed ID: 21817414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of Dirac-like excitations in graphene in the presence of smooth inhomogeneous magnetic fields.
    Roy P; Ghosh TK; Bhattacharya K
    J Phys Condens Matter; 2012 Feb; 24(5):055301. PubMed ID: 22227414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the confinement of magnetic monopoles in quantum spin ice.
    Sarte PM; Aczel AA; Ehlers G; Stock C; Gaulin BD; Mauws C; Stone MB; Calder S; Nagler SE; Hollett JW; Zhou HD; Gardner JS; Attfield JP; Wiebe CR
    J Phys Condens Matter; 2017 Nov; 29(45):45LT01. PubMed ID: 29049030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Confinement of Dirac Quasiparticles in Graphene Patterned with Sub-Nanometer Precision.
    Cortés-Del Río E; Mallet P; González-Herrero H; Lado JL; Fernández-Rossier J; Gómez-Rodríguez JM; Veuillen JY; Brihuega I
    Adv Mater; 2020 Jul; 32(30):e2001119. PubMed ID: 32567110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic-Field-Tunable Valley-Contrasting Pseudomagnetic Confinement in Graphene.
    Ren YN; Zhuang YC; Sun QF; He L
    Phys Rev Lett; 2022 Aug; 129(7):076802. PubMed ID: 36018692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic confinement in graphene quantum rings due to substrate-induced mass radial kink.
    Xavier LJ; da Costa DR; Chaves A; Pereira JM; Farias GA
    J Phys Condens Matter; 2016 Dec; 28(50):505501. PubMed ID: 27758976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum confinement and magnetic-field effects on the electron g factor in GaAs-(Ga, Al)As cylindrical quantum dots.
    Mejía-Salazar JR; Porras-Montenegro N; Oliveira LE
    J Phys Condens Matter; 2009 Nov; 21(45):455302. PubMed ID: 21694007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical response of a line node semimetal.
    Carbotte JP
    J Phys Condens Matter; 2017 Feb; 29(4):045301. PubMed ID: 27882896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic Artificial Molecules Realized by Two Coupled Graphene Quantum Dots.
    Fu ZQ; Pan Y; Zhou JJ; Bai KK; Ma DL; Zhang Y; Qiao JB; Jiang H; Liu H; He L
    Nano Lett; 2020 Sep; 20(9):6738-6743. PubMed ID: 32787177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical properties of Dirac electrons in a parabolic well.
    Kim SC; Lee JW; Yang SR
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6345-8. PubMed ID: 24205658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.