These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30051897)
41. Imidazole-Functionalized Fullerene as a Vertically Phase-Separated Cathode Interfacial Layer of Inverted Ternary Polymer Solar Cells. Li D; Liu Q; Zhen J; Fang Z; Chen X; Yang S ACS Appl Mater Interfaces; 2017 Jan; 9(3):2720-2729. PubMed ID: 28045489 [TBL] [Abstract][Full Text] [Related]
42. Tetraphenylphosphonium Bromide as a Cathode Buffer Layer Material for Highly Efficient Polymer Solar Cells. Gupta M; Yan D; Xu J; Yao J; Zhan C ACS Appl Mater Interfaces; 2018 Feb; 10(6):5569-5576. PubMed ID: 29359553 [TBL] [Abstract][Full Text] [Related]
43. Low-temperature solution-processed vanadium oxide as hole transport layer for efficient and stable perovskite solar cells. Guo Q; Wang C; Li J; Bai Y; Wang F; Liu L; Zhang B; Hayat T; Alsaedi A; Tan Z Phys Chem Chem Phys; 2018 Aug; 20(33):21746-21754. PubMed ID: 30106071 [TBL] [Abstract][Full Text] [Related]
44. Highly efficient polymer light-emitting diodes using graphene oxide as a hole transport layer. Lee BR; Kim JW; Kang D; Lee DW; Ko SJ; Lee HJ; Lee CL; Kim JY; Shin HS; Song MH ACS Nano; 2012 Apr; 6(4):2984-91. PubMed ID: 22390380 [TBL] [Abstract][Full Text] [Related]
45. Effect of Dual Cathode Buffer Layer on the Charge Carrier Dynamics of rrP3HT:PCBM Based Bulk Heterojunction Solar Cell. Singh A; Dey A; Das D; Iyer PK ACS Appl Mater Interfaces; 2016 May; 8(17):10904-10. PubMed ID: 27075007 [TBL] [Abstract][Full Text] [Related]
46. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. Li SS; Tu KH; Lin CC; Chen CW; Chhowalla M ACS Nano; 2010 Jun; 4(6):3169-74. PubMed ID: 20481512 [TBL] [Abstract][Full Text] [Related]
47. Impedance investigation of the highly efficient polymer solar cells with composite CuBr Li Z; Guo W; Liu C; Zhang X; Li S; Guo J; Zhang L Phys Chem Chem Phys; 2017 Aug; 19(31):20839-20846. PubMed ID: 28744544 [TBL] [Abstract][Full Text] [Related]
48. Spiky Durian-Shaped Au@Ag Nanoparticles in PEDOT:PSS for Improved Efficiency of Organic Solar Cells. Alkhalayfeh MA; Abdul Aziz A; Pakhuruddin MZ; M Katubi KM Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639989 [TBL] [Abstract][Full Text] [Related]
49. Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Yu JC; Hong JA; Jung ED; Kim DB; Baek SM; Lee S; Cho S; Park SS; Choi KJ; Song MH Sci Rep; 2018 Jan; 8(1):1070. PubMed ID: 29348661 [TBL] [Abstract][Full Text] [Related]
50. Selective Morphology Control of Bulk Heterojunction in Polymer Solar Cells Using Binary Processing Additives. Jung YS; Yeo JS; Kim NK; Lee S; Kim DY ACS Appl Mater Interfaces; 2016 Nov; 8(44):30372-30378. PubMed ID: 27760295 [TBL] [Abstract][Full Text] [Related]
51. Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Li M; Ni W; Kan B; Wan X; Zhang L; Zhang Q; Long G; Zuo Y; Chen Y Phys Chem Chem Phys; 2013 Nov; 15(43):18973-8. PubMed ID: 24097209 [TBL] [Abstract][Full Text] [Related]
52. Improved Carrier Transport in Perovskite Solar Cells Probed by Femtosecond Transient Absorption Spectroscopy. Serpetzoglou E; Konidakis I; Kakavelakis G; Maksudov T; Kymakis E; Stratakis E ACS Appl Mater Interfaces; 2017 Dec; 9(50):43910-43919. PubMed ID: 29188719 [TBL] [Abstract][Full Text] [Related]
53. Polymer bulk heterojunction solar cells with PEDOT:PSS bilayer structure as hole extraction layer. Kim W; Kim N; Kim JK; Park I; Choi YS; Wang DH; Chae H; Park JH ChemSusChem; 2013 Jun; 6(6):1070-5. PubMed ID: 23658139 [TBL] [Abstract][Full Text] [Related]
54. Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement. Stratakis E; Stylianakis MM; Koudoumas E; Kymakis E Nanoscale; 2013 May; 5(10):4144-50. PubMed ID: 23571764 [TBL] [Abstract][Full Text] [Related]
55. Regulating Bulk-Heterojunction Molecular Orientations through Surface Free Energy Control of Hole-Transporting Layers for High-Performance Organic Solar Cells. Wang J; Zheng Z; Zhang D; Zhang J; Zhou J; Liu J; Xie S; Zhao Y; Zhang Y; Wei Z; Hou J; Tang Z; Zhou H Adv Mater; 2019 Apr; 31(17):e1806921. PubMed ID: 30856291 [TBL] [Abstract][Full Text] [Related]
56. High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. Yan H; Lee P; Armstrong NR; Graham A; Evmenenko GA; Dutta P; Marks TJ J Am Chem Soc; 2005 Mar; 127(9):3172-83. PubMed ID: 15740157 [TBL] [Abstract][Full Text] [Related]
57. Solution-processed nickel acetate as hole collection layer for polymer solar cells. Tan Z; Zhang W; Qian D; Cui C; Xu Q; Li L; Li S; Li Y Phys Chem Chem Phys; 2012 Nov; 14(41):14217-23. PubMed ID: 22825321 [TBL] [Abstract][Full Text] [Related]
58. Co-La-Based Hole-Transporting Layers for Binary Organic Solar Cells with 18.82 % Efficiency. Zhang G; Chen Q; Zhang Z; Fang J; Zhao C; Wei Y; Li W Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202216304. PubMed ID: 36448962 [TBL] [Abstract][Full Text] [Related]
59. An approach for an advanced anode interfacial layer with electron-blocking ability to achieve high-efficiency organic photovoltaics. Yeo JS; Yun JM; Kang M; Khim D; Lee SH; Kim SS; Na SI; Kim DY ACS Appl Mater Interfaces; 2014 Nov; 6(22):19613-20. PubMed ID: 25343490 [TBL] [Abstract][Full Text] [Related]