BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 30051910)

  • 1. Specific synaptic input strengths determine the computational properties of excitation-inhibition integration in a sound localization circuit.
    Gjoni E; Zenke F; Bouhours B; Schneggenburger R
    J Physiol; 2018 Oct; 596(20):4945-4967. PubMed ID: 30051910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural basis of strong unitary inhibition in a binaural neuron.
    Gjoni E; Aguet C; Sahlender DA; Knott G; Schneggenburger R
    J Physiol; 2018 Oct; 596(20):4969-4982. PubMed ID: 30054922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness of neuronal tuning to binaural sound localization cues against age-related loss of inhibitory synaptic inputs.
    Ashida G; Tollin DJ; Kretzberg J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009130. PubMed ID: 34242210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA is a modulator, rather than a classical transmitter, in the medial nucleus of the trapezoid body-lateral superior olive sound localization circuit.
    Fischer AU; Müller NIC; Deller T; Del Turco D; Fisch JO; Griesemer D; Kattler K; Maraslioglu A; Roemer V; Xu-Friedman MA; Walter J; Friauf E
    J Physiol; 2019 Apr; 597(8):2269-2295. PubMed ID: 30776090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.
    Garcia-Pino E; Gessele N; Koch U
    J Neurosci; 2017 Aug; 37(31):7403-7419. PubMed ID: 28674175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precisely timed inhibition facilitates action potential firing for spatial coding in the auditory brainstem.
    Beiderbeck B; Myoga MH; Müller NIC; Callan AR; Friauf E; Grothe B; Pecka M
    Nat Commun; 2018 May; 9(1):1771. PubMed ID: 29720589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity.
    Müller NIC; Sonntag M; Maraslioglu A; Hirtz JJ; Friauf E
    J Physiol; 2019 Nov; 597(22):5469-5493. PubMed ID: 31529505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational principles of neural adaptation for binaural signal integration.
    Oess T; Ernst MO; Neumann H
    PLoS Comput Biol; 2020 Jul; 16(7):e1008020. PubMed ID: 32678847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of synaptic fidelity and action potential robustness at an inhibitory sound localization circuit: effects of otoferlin-related deafness.
    Müller NIC; Paulußen I; Hofmann LN; Fisch JO; Singh A; Friauf E
    J Physiol; 2022 May; 600(10):2461-2497. PubMed ID: 35439328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Considerable differences between auditory medulla, auditory midbrain, and hippocampal synapses during sustained high-frequency stimulation: Exceptional vesicle replenishment restricted to sound localization circuit.
    Brill SE; Janz K; Singh A; Friauf E
    Hear Res; 2019 Sep; 381():107771. PubMed ID: 31394425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds.
    Ashida G; Kretzberg J; Tollin DJ
    PLoS Comput Biol; 2016 Jun; 12(6):e1004997. PubMed ID: 27322612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive.
    Sanes DH
    J Neurosci; 1990 Nov; 10(11):3494-506. PubMed ID: 2172478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arrangement of Excitatory Synaptic Inputs on Dendrites of the Medial Superior Olive.
    Callan AR; Heß M; Felmy F; Leibold C
    J Neurosci; 2021 Jan; 41(2):269-283. PubMed ID: 33208467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of excitatory synaptic transmission to the superior paraolivary and lateral superior olivary nuclei optimizes differential decoding strategies.
    Felix RA; Magnusson AK
    Neuroscience; 2016 Oct; 334():1-12. PubMed ID: 27476438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow NMDA-Mediated Excitation Accelerates Offset-Response Latencies Generated via a Post-Inhibitory Rebound Mechanism.
    Rajaram E; Kaltenbach C; Fischl MJ; Mrowka L; Alexandrova O; Grothe B; Hennig MH; Kopp-Scheinpflug C
    eNeuro; 2019; 6(3):. PubMed ID: 31152098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the precision of neural computation with interaural level differences in the lateral superior olive.
    Bures Z; Marsalek P
    Brain Res; 2013 Nov; 1536():16-26. PubMed ID: 23684714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological models of the lateral superior olive.
    Ashida G; Tollin DJ; Kretzberg J
    PLoS Comput Biol; 2017 Dec; 13(12):e1005903. PubMed ID: 29281618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing of interaural intensity differences in the LSO: role of interaural threshold differences.
    Park TJ; Monsivais P; Pollak GD
    J Neurophysiol; 1997 Jun; 77(6):2863-78. PubMed ID: 9212244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inhibitory glycinergic projection from the cochlear nucleus to the lateral superior olive.
    Weingarten DJ; Sebastian E; Winkelhoff J; Patschull-Keiner N; Fischer AU; Wadle SL; Friauf E; Hirtz JJ
    Front Neural Circuits; 2023; 17():1307283. PubMed ID: 38107610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic pharmacology of the superior olivary complex studied in mouse brain slice.
    Wu SH; Kelly JB
    J Neurosci; 1992 Aug; 12(8):3084-97. PubMed ID: 1494947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.