BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30052011)

  • 1. [Study on the Spectrum Research on the Process of Oil Shale Pyrolysis].
    Lan XZ; Luo WJ; Song YH; Zhang QL; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Apr; 36(4):1121-6. PubMed ID: 30052011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.
    Alstadt KN; Katti DR; Katti KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():105-13. PubMed ID: 22261101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Surface Properties of Organic Matter and Clay Minerals in Shale.
    Tian S; Wang T; Li G; Sheng M; Zhang P
    Langmuir; 2019 Apr; 35(17):5711-5718. PubMed ID: 30917659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ReaxFF Molecular Dynamics Study on the Microscopic Mechanism for Kerogen Pyrolysis.
    Chen Y; Wang Z; Li B; Yu K; Wang H; Wang J; Huo Y; Wang J
    Langmuir; 2023 Dec; 39(50):18581-18593. PubMed ID: 38060286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral Composition and Its Control on Nanopores of Marine-Continental Transitional Shale from the Ningwu Basin, North China.
    Zhang BX; Fu XH; Shen YL; Zhang QH; Deng Z
    J Nanosci Nanotechnol; 2021 Jan; 21(1):168-180. PubMed ID: 33213621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the effect of
    Xinmin W; Qing W; Chunlei W
    RSC Adv; 2022 Jul; 12(31):20239-20250. PubMed ID: 35919599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Components of oil sludge and their influence on pyrolysis behaviors].
    Song W; Liu JG; Nie YF
    Huan Jing Ke Xue; 2008 Jul; 29(7):2063-7. PubMed ID: 18828401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [FTIR analysis of oil shales from Huadian Jilin and their pyrolysates].
    Xie FF; Wang Z; Song WL; Lin WG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):91-4. PubMed ID: 21428064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Petrographic, mineralogical, morphological and organic constraints of the Permian shaly-coal in the Tuli Basin of Limpopo-Area Karoo-Aged basin, South Africa: Implication for potential gas generation.
    Akintola GO; Amponsah-Dacosta F; Rupprecht S; Mhlongo SE
    Heliyon; 2023 Mar; 9(3):e14446. PubMed ID: 36967899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on the Shale Reservoir Sensitivity by Using the Mineral Analysis Method.
    Liu Y; Wei J; Lin J; Yang Y; Ma W; Li J; Zhao P; Zeng Q; Wu J
    ACS Omega; 2024 May; 9(18):20196-20205. PubMed ID: 38737071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release performance and kinetic behavior of volatile products from controlled pressure pyrolysis of oil shale in nitrogen atmosphere.
    Zhao S; Su J; Wu J
    Sci Rep; 2023 Jul; 13(1):10676. PubMed ID: 37393308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steranes and triterpanes generated from kerogen pyrolysis in the absence and presence of minerals.
    Tannenbaum E; Ruth E; Kaplan IR
    Geochim Cosmochim Acta; 1986; 50():805-12. PubMed ID: 11542029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed.
    Sun YH; Bai FT; Lü XS; Li Q; Liu YM; Guo MY; Guo W; Liu BC
    Sci Rep; 2015 Feb; 5():8290. PubMed ID: 25656294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on Pyrolysis-Mechanics-Seepage Behavior of Oil Shale in a Closed System Subject to Real-Time Temperature Variations.
    Wang L; Su J; Yang D
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Associated Minerals on the Co-Current Oxidizing Pyrolysis of Oil Shale in a Low-Temperature Stage.
    Yang Q; Guo M; Guo W
    ACS Omega; 2021 Sep; 6(37):23988-23997. PubMed ID: 34568677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Behavior of Oil Shale Pyrolysis under Low-Temperature Co-Current Oxidizing Conditions.
    Guo W; Yang Q; Zhang X; Xu S; Deng S; Li Q
    ACS Omega; 2021 Jul; 6(28):18074-18083. PubMed ID: 34308041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applicability of micro-FTIR in detecting shale heterogeneity.
    Gasaway C; Mastalerz M; Krause F; Clarkson C; Debuhr C
    J Microsc; 2017 Jan; 265(1):60-72. PubMed ID: 27596097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release Mechanism of Volatile Products from Oil Shale Pressure-Controlled Pyrolysis Induced by Supercritical Carbon Dioxide.
    Zhao S; Su J; Wu J; Xiaoshu L
    ACS Omega; 2022 Dec; 7(50):47330-47340. PubMed ID: 36570204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of minerals in the thermal alteration of organic matter--IV. Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments.
    Huizinga BJ; Tannenbaum E; Kaplan IR
    Geochim Cosmochim Acta; 1987; 51():1083-97. PubMed ID: 11542080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Numerical Simulation of Hydrocarbon Production and Reservoir Deformation of Oil Shale In Situ Conversion Processing Using a Downhole Burner.
    Liu Y; Xue L; Bai F; Zhao J; Yan Y
    ACS Omega; 2022 Jul; 7(27):23695-23707. PubMed ID: 35847291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.