These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 30052513)
1. A coefficient-free and continuous blood pressure estimation method based on the arterial lumen area model. Ma S; Wang G; Li L; Cheng Y Biomed Tech (Berl); 2019 May; 64(3):263-273. PubMed ID: 30052513 [TBL] [Abstract][Full Text] [Related]
2. Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence. Forouzanfar M; Ahmad S; Batkin I; Dajani HR; Groza VZ; Bolic M IEEE Trans Biomed Eng; 2013 Jul; 60(7):1814-24. PubMed ID: 23372068 [TBL] [Abstract][Full Text] [Related]
3. Advanced Volume-Compensation Method for Indirect Finger Arterial Pressure Determination: Comparison with Brachial Sphygmomanometry. Matsumura K; Yamakoshi T; Rolfe P; Yamakoshi KI IEEE Trans Biomed Eng; 2017 May; 64(5):1131-1137. PubMed ID: 27429430 [TBL] [Abstract][Full Text] [Related]
4. How important is the recommended slow cuff pressure deflation rate for blood pressure measurement? Zheng D; Amoore JN; Mieke S; Murray A Ann Biomed Eng; 2011 Oct; 39(10):2584-91. PubMed ID: 21735319 [TBL] [Abstract][Full Text] [Related]
5. Improved Measurement of Blood Pressure by Extraction of Characteristic Features from the Cuff Oscillometric Waveform. Lim PK; Ng SC; Jassim WA; Redmond SJ; Zilany M; Avolio A; Lim E; Tan MP; Lovell NH Sensors (Basel); 2015 Jun; 15(6):14142-61. PubMed ID: 26087370 [TBL] [Abstract][Full Text] [Related]
6. In vivo validation of an oscillometric method for estimating central aortic pressure. Liang F; Yin Z; Fan Y; Chen K; Wang C Int J Cardiol; 2015 Nov; 199():439-41. PubMed ID: 26263012 [No Abstract] [Full Text] [Related]
7. Central Blood Pressure Monitoring via a Standard Automatic Arm Cuff. Natarajan K; Cheng HM; Liu J; Gao M; Sung SH; Chen CH; Hahn JO; Mukkamala R Sci Rep; 2017 Oct; 7(1):14441. PubMed ID: 29089581 [TBL] [Abstract][Full Text] [Related]
8. Comparison between oscillometric and intra-arterial blood pressure measurements in ill preterm and full-term neonates. Lalan S; Blowey D J Am Soc Hypertens; 2014 Jan; 8(1):36-44. PubMed ID: 24503236 [TBL] [Abstract][Full Text] [Related]
9. Measurement accuracy of a stand-alone oscillometric central blood pressure monitor: a validation report for Microlife WatchBP Office Central. Cheng HM; Sung SH; Shih YT; Chuang SY; Yu WC; Chen CH Am J Hypertens; 2013 Jan; 26(1):42-50. PubMed ID: 23382326 [TBL] [Abstract][Full Text] [Related]
10. Intra-arterial versus oscillometric blood pressure measurements in women with severe peripartum hypertension undergoing urgent treatment with nicardipine: An observational study. Zhang Y; Lan L; Qi H; Qin J; Ren L; Li L; Yan Y; Gan S; Xiang B Pregnancy Hypertens; 2021 Jun; 24():100-106. PubMed ID: 33773326 [TBL] [Abstract][Full Text] [Related]
11. Augmented blood pressure measurement through the noninvasive estimation of physiological arterial pressure variability. Soueidan K; Chen S; Dajani HR; Bolic M; Groza V Physiol Meas; 2012 Jun; 33(6):881-99. PubMed ID: 22551623 [TBL] [Abstract][Full Text] [Related]
12. Feasibility and reproducibility of noninvasive 24-h ambulatory aortic blood pressure monitoring with a brachial cuff-based oscillometric device. Protogerou AD; Argyris A; Nasothimiou E; Vrachatis D; Papaioannou TG; Tzamouranis D; Blacher J; Safar ME; Sfikakis P; Stergiou GS Am J Hypertens; 2012 Aug; 25(8):876-82. PubMed ID: 22673021 [TBL] [Abstract][Full Text] [Related]
13. Random zero sphygmomanometer versus automatic oscillometric blood pressure monitor; is either the instrument of choice? Goonasekera CD; Dillon MJ J Hum Hypertens; 1995 Nov; 9(11):885-9. PubMed ID: 8583467 [TBL] [Abstract][Full Text] [Related]
14. Non-invasive determination of instantaneous brachial blood flow using the oscillometric method. Liu SH; Wang JJ; Cheng DC Biomed Tech (Berl); 2009 Aug; 54(4):171-7. PubMed ID: 19807282 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of a brachial cuff and suprasystolic waveform algorithm method to noninvasively derive central blood pressure. Costello BT; Schultz MG; Black JA; Sharman JE Am J Hypertens; 2015 Apr; 28(4):480-6. PubMed ID: 25194156 [TBL] [Abstract][Full Text] [Related]
16. Estimation of mean arterial pressure from the oscillometric cuff pressure: comparison of different techniques. Zheng D; Amoore JN; Mieke S; Murray A Med Biol Eng Comput; 2011 Jan; 49(1):33-9. PubMed ID: 21042950 [TBL] [Abstract][Full Text] [Related]
17. Validation of a Suprasystolic Cuff System for Static and Dynamic Representation of the Central Pressure Waveform. Tamborini A; Gharib M J Am Heart Assoc; 2024 Apr; 13(8):e033290. PubMed ID: 38591330 [TBL] [Abstract][Full Text] [Related]
18. Radial artery tonometry: moderately accurate but unpredictable technique of continuous non-invasive arterial pressure measurement. Weiss BM; Spahn DR; Rahmig H; Rohling R; Pasch T Br J Anaesth; 1996 Mar; 76(3):405-11. PubMed ID: 8785142 [TBL] [Abstract][Full Text] [Related]
19. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation. P M N; Joseph J; Karthik S; Sivaprakasam M; Chenniappan M IEEE Trans Biomed Eng; 2018 Nov; 65(11):2392-2404. PubMed ID: 30130174 [TBL] [Abstract][Full Text] [Related]
20. Characteristic Ratio-Independent Arterial Stiffness-Based Blood Pressure Estimation. Baktash S; Forouzanfar M; Batkin I; Bolic M; Groza VZ; Ahmad S; Dajani HR IEEE J Biomed Health Inform; 2017 Sep; 21(5):1263-1270. PubMed ID: 27479981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]