These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30052526)

  • 1. Stabilities and electronic properties of nanowires made of single atomic sulfur chains encapsulated in zigzag carbon nanotubes.
    Li Y; Bai H; Li L; Huang Y
    Nanotechnology; 2018 Oct; 29(41):415703. PubMed ID: 30052526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and electronic properties of the double-wall nanotubes constructed from SiO2 nanotubes encapsulated inside zigzag carbon nanotubes.
    Qiao W; Bai H; Zhu Y; Huang Y
    J Phys Condens Matter; 2012 May; 24(18):185302. PubMed ID: 22481241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic property modification of single-walled carbon nanotubes by encapsulation of sulfur-terminated graphene nanoribbons.
    Pollack A; Alnemrat S; Chamberlain TW; Khlobystov AN; Hooper JP; Osswald S
    Small; 2014 Dec; 10(24):5077-86. PubMed ID: 25123503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic properties of carbon nanotubes complexed with a DNA nucleotide.
    Chehelamirani M; da Silva MC; Salahub DR
    Phys Chem Chem Phys; 2017 Mar; 19(10):7333-7342. PubMed ID: 28239719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transport properties of silicon and carbon nanotubes at the atomic scale: a first-principles study.
    Ma T; Wen S; Yan L; Wu C; Zhang C; Zhang M; Su Z
    Phys Chem Chem Phys; 2016 Aug; 18(34):23643-50. PubMed ID: 27510551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling zigzag CNT: dependence of structural and electronic properties on length, and application to encapsulation of HCN and C
    Aguiar EC; Longo RL; da Silva JB
    J Mol Model; 2017 Apr; 23(4):144. PubMed ID: 28364309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and electronic properties of molybdenum monatomic wires encapsulated in carbon nanotubes.
    García-Fuente A; García-Suárez VM; Ferrer J; Vega A
    J Phys Condens Matter; 2011 Jul; 23(26):265302. PubMed ID: 21666307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon-doping in carbon nanotubes: formation energies, electronic structures, and chemical reactivity.
    Bian R; Zhao J; Fu H
    J Mol Model; 2013 Apr; 19(4):1667-75. PubMed ID: 23292251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory study of finite carbon chains.
    Fan X; Liu L; Lin J; Shen Z; Kuo JL
    ACS Nano; 2009 Nov; 3(11):3788-94. PubMed ID: 19852495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanowires made by the insertion-and-fusion method toward carbon-hydrogen nanoelectronics.
    Liu F; Wang Q; Tang Y; Du W; Chang W; Fu Z; Zhao X; Liu Y
    Nanoscale; 2023 Mar; 15(13):6143-6155. PubMed ID: 36892226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube.
    Kou L; Tang C; Wehling T; Frauenheim T; Chen C
    Nanoscale; 2013 Apr; 5(8):3306-14. PubMed ID: 23463363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental frequency analysis of endohedrally functionalized carbon nanotubes with metallic nanowires: a molecular dynamics study.
    Ajori S; Haghighi S; Parsapour H; Ansari R
    J Mol Model; 2021 Oct; 27(11):313. PubMed ID: 34611775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunneling Spectroscopy for Electronic Bands in Multi-Walled Carbon Nanotubes with Van Der Waals Gap.
    Choi DH; Lee SM; Jeong DW; Lee JO; Ha DH; Bae MH; Kim JJ
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33917209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing electrical properties of individual carbon nanotubes filled with Fe
    Xu J; Lv X; Peng Y; Boi FS; Zhang X; Xiang G
    Nanotechnology; 2020 Nov; 31(47):475706. PubMed ID: 32674089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirality effects in atomic vacancy-limited transport in metallic carbon nanotubes.
    Zeng H; Hu H; Leburton JP
    ACS Nano; 2010 Jan; 4(1):292-6. PubMed ID: 20000404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A First-Principle Theoretical Study of Mechanical and Electronic Properties in Graphene Single-Walled Carbon Nanotube Junctions.
    Yang N; Yang D; Chen L; Liu D; Cai M; Fan X
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29137203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of thermal evolution of copper nanoclusters encapsulated in carbon nanotubes: a molecular dynamics study.
    Akbarzadeh H; Abbaspour M; Salemi S; Abroodi M
    Phys Chem Chem Phys; 2015 May; 17(19):12747-59. PubMed ID: 25903839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zigzag HgTe Nanowires Modify the Electron-Phonon Interaction in Chirality-Refined Single-Walled Carbon Nanotubes.
    Hu Z; Breeze B; Kashtiban RJ; Sloan J; Lloyd-Hughes J
    ACS Nano; 2022 Apr; 16(4):6789-6800. PubMed ID: 35389617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics and electronic structures of perylene confined in carbon nanotubes.
    Nagasawa Y; Koyama T; Okada S
    R Soc Open Sci; 2018 Jun; 5(6):180359. PubMed ID: 30110483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.