These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30052773)

  • 1. HOGMMNC: a higher order graph matching with multiple network constraints model for gene-drug regulatory modules identification.
    Chen J; Peng H; Han G; Cai H; Cai J
    Bioinformatics; 2019 Feb; 35(4):602-610. PubMed ID: 30052773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Multidimensional Regulatory Modules Through Multi-Graph Matching With Network Constraints.
    Chen J; Han G; Xu A; Cai H
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):987-998. PubMed ID: 31295100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identify Multiple Gene-Drug Common Modules via Constrained Graph Matching.
    Chen J; Huang J; Liao Y; Zhu L; Cai H
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4794-4805. PubMed ID: 35788454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data.
    Chen J; Zhang S
    Bioinformatics; 2016 Jun; 32(11):1724-32. PubMed ID: 26833341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of gene-drug common module identification methods using pharmacogenomics data.
    Huang J; Chen J; Zhang B; Zhu L; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of single and module-based methods for modeling gene regulatory networks.
    Hernaez M; Blatti C; Gevaert O
    Bioinformatics; 2020 Jan; 36(2):558-567. PubMed ID: 31287491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple network algorithm for epigenetic modules via the integration of genome-wide DNA methylation and gene expression data.
    Ma X; Liu Z; Zhang Z; Huang X; Tang W
    BMC Bioinformatics; 2017 Jan; 18(1):72. PubMed ID: 28137264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensembling graph attention networks for human microbe-drug association prediction.
    Long Y; Wu M; Liu Y; Kwoh CK; Luo J; Li X
    Bioinformatics; 2020 Dec; 36(Suppl_2):i779-i786. PubMed ID: 33381844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying multi-layer gene regulatory modules from multi-dimensional genomic data.
    Li W; Zhang S; Liu CC; Zhou XJ
    Bioinformatics; 2012 Oct; 28(19):2458-66. PubMed ID: 22863767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LocalAli: an evolutionary-based local alignment approach to identify functionally conserved modules in multiple networks.
    Hu J; Reinert K
    Bioinformatics; 2015 Feb; 31(3):363-72. PubMed ID: 25282642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HiSCF: leveraging higher-order structures for clustering analysis in biological networks.
    Hu L; Zhang J; Pan X; Yan H; You ZH
    Bioinformatics; 2021 May; 37(4):542-550. PubMed ID: 32931549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer.
    Zhang J; Liu L; Li J; Le TD
    Bioinformatics; 2018 Dec; 34(24):4232-4240. PubMed ID: 29955818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying miRNA sponge modules using biclustering and regulatory scores.
    Zhang J; Le TD; Liu L; Li J
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):44. PubMed ID: 28361682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying miRNA-Gene Common and Specific Regulatory Modules for Cancer Subtyping by a High-Order Graph Matching Model.
    Chen J; Han G; Xu A; Akutsu T; Cai H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):421-431. PubMed ID: 35320104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting synthetic lethal interactions using heterogeneous data sources.
    Liany H; Jeyasekharan A; Rajan V
    Bioinformatics; 2020 Apr; 36(7):2209-2216. PubMed ID: 31782759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous networks integration for disease-gene prioritization with node kernels.
    Tran VD; Sperduti A; Backofen R; Costa F
    Bioinformatics; 2020 May; 36(9):2649-2656. PubMed ID: 31990289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEXCOwalk: mutual exclusion and coverage based random walk to identify cancer modules.
    Ahmed R; Baali I; Erten C; Hoxha E; Kazan H
    Bioinformatics; 2020 Feb; 36(3):872-879. PubMed ID: 31432076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian network prior: network analysis of biological data using external knowledge.
    Isci S; Dogan H; Ozturk C; Otu HH
    Bioinformatics; 2014 Mar; 30(6):860-7. PubMed ID: 24215027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A network of networks approach for modeling interconnected brain tissue-specific networks.
    Kawakubo H; Matsui Y; Kushima I; Ozaki N; Shimamura T
    Bioinformatics; 2019 Sep; 35(17):3092-3101. PubMed ID: 30649245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.