These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30052773)

  • 21. Drug repositioning based on bounded nuclear norm regularization.
    Yang M; Luo H; Li Y; Wang J
    Bioinformatics; 2019 Jul; 35(14):i455-i463. PubMed ID: 31510658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization.
    Ammad-Ud-Din M; Khan SA; Malani D; Murumägi A; Kallioniemi O; Aittokallio T; Kaski S
    Bioinformatics; 2016 Sep; 32(17):i455-i463. PubMed ID: 27587662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A co-module approach for elucidating drug-disease associations and revealing their molecular basis.
    Zhao S; Li S
    Bioinformatics; 2012 Apr; 28(7):955-61. PubMed ID: 22285830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DeepCDR: a hybrid graph convolutional network for predicting cancer drug response.
    Liu Q; Hu Z; Jiang R; Zhou M
    Bioinformatics; 2020 Dec; 36(Suppl_2):i911-i918. PubMed ID: 33381841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. LRSSL: predict and interpret drug-disease associations based on data integration using sparse subspace learning.
    Liang X; Zhang P; Yan L; Fu Y; Peng F; Qu L; Shao M; Chen Y; Chen Z
    Bioinformatics; 2017 Apr; 33(8):1187-1196. PubMed ID: 28096083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prior knowledge guided active modules identification: an integrated multi-objective approach.
    Chen W; Liu J; He S
    BMC Syst Biol; 2017 Mar; 11(Suppl 2):8. PubMed ID: 28361699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Semi-supervised network inference using simulated gene expression dynamics.
    Nguyen P; Braun R
    Bioinformatics; 2018 Apr; 34(7):1148-1156. PubMed ID: 29186340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finding Correlated Patterns via High-Order Matching for Multiple Sourced Biological Data.
    Yang X; Han G; Chen J; Cai H
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):1017-1025. PubMed ID: 30130172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel method for predicting activity of cis-regulatory modules, based on a diverse training set.
    Yang W; Sinha S
    Bioinformatics; 2017 Jan; 33(1):1-7. PubMed ID: 27609510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying cancer prognostic modules by module network analysis.
    Zhou XH; Chu XY; Xue G; Xiong JH; Zhang HY
    BMC Bioinformatics; 2019 Feb; 20(1):85. PubMed ID: 30777030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of disease modules using higher-order network structure.
    Singh P; Kuder H; Ritz A
    Bioinform Adv; 2023; 3(1):vbad140. PubMed ID: 37860106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new correlation clustering method for cancer mutation analysis.
    Hou JP; Emad A; Puleo GJ; Ma J; Milenkovic O
    Bioinformatics; 2016 Dec; 32(24):3717-3728. PubMed ID: 27540270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsic-overlapping co-expression module detection with application to Alzheimer's Disease.
    Manners HN; Roy S; Kalita JK
    Comput Biol Chem; 2018 Dec; 77():373-389. PubMed ID: 30466046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene-microRNA network module analysis for ovarian cancer.
    Zhang S; Ng MK
    BMC Syst Biol; 2016 Dec; 10(Suppl 4):117. PubMed ID: 28155675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of regulatory modules in genome scale transcription regulatory networks.
    Song Q; Grene R; Heath LS; Li S
    BMC Syst Biol; 2017 Dec; 11(1):140. PubMed ID: 29246163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying new cancer genes based on the integration of annotated gene sets via hypergraph neural networks.
    Deng C; Li HD; Zhang LS; Liu Y; Li Y; Wang J
    Bioinformatics; 2024 Jun; 40(Supplement_1):i511-i520. PubMed ID: 38940121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Systemic Analysis of Transcriptomic and Epigenomic Data To Reveal Regulation Patterns for Complex Disease.
    Xu C; Zhang JG; Lin D; Zhang L; Shen H; Deng HW
    G3 (Bethesda); 2017 Jul; 7(7):2271-2279. PubMed ID: 28500050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.