BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 3005279)

  • 1. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical.
    Doroshow JH; Davies KJ
    J Biol Chem; 1986 Mar; 261(7):3068-74. PubMed ID: 3005279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase.
    Doroshow JH
    Cancer Res; 1983 Oct; 43(10):4543-51. PubMed ID: 6309369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of anthracycline antibiotics on oxygen radical formation in rat heart.
    Doroshow JH
    Cancer Res; 1983 Feb; 43(2):460-72. PubMed ID: 6293697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of Anthracycline-Enhanced Reactive Oxygen Metabolism in Tumor Cells.
    Doroshow JH
    Oxid Med Cell Longev; 2019; 2019():9474823. PubMed ID: 31885826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA.
    Giulivi C; Boveris A; Cadenas E
    Arch Biochem Biophys; 1995 Feb; 316(2):909-16. PubMed ID: 7864650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox activities of antitumor anthracyclines determined by microsomal oxygen consumption and assays for superoxide anion and hydroxyl radical generation.
    Peters JH; Gordon GR; Kashiwase D; Lown JW; Yen SF; Plambeck JA
    Biochem Pharmacol; 1986 Apr; 35(8):1309-23. PubMed ID: 3008758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doxorubicin enhances complement susceptibility of human melanoma cells by extracellular oxygen radical formation.
    Bredehorst R; Panneerselvam M; Vogel CW
    J Biol Chem; 1987 Feb; 262(5):2034-41. PubMed ID: 3029060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin.
    Davies KJ; Doroshow JH; Hochstein P
    FEBS Lett; 1983 Mar; 153(1):227-30. PubMed ID: 6298008
    [No Abstract]   [Full Text] [Related]  

  • 10. A comparative study of the redox-cycling of a quinone (rifamycin S) and a quinonimine (rifabutin) antibiotic by rat liver microsomes.
    Rao DN; Cederbaum AI
    Free Radic Biol Med; 1997; 22(3):439-46. PubMed ID: 8981035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitoxantrone: propensity for free radical formation and lipid peroxidation--implications for cardiotoxicity.
    Novak RF; Kharasch ED
    Invest New Drugs; 1985; 3(2):95-9. PubMed ID: 2991163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative cardiac oxygen radical metabolism by anthracycline antibiotics, mitoxantrone, bisantrene, 4'-(9-acridinylamino)-methanesulfon-m-anisidide, and neocarzinostatin.
    Doroshow JH; Davies KJ
    Biochem Pharmacol; 1983 Oct; 32(19):2935-9. PubMed ID: 6313012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of anticancer quinone drugs, aclacinomycin A, adriamycin, carbazilquinone, and mitomycin C, with NADPH-cytochrome P-450 reductase, xanthine oxidase and oxygen.
    Komiyama T; Kikuchi T; Sugiura Y
    J Pharmacobiodyn; 1986 Aug; 9(8):651-64. PubMed ID: 3023600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adriamycin stimulated superoxide formation in submitochondrial particles.
    Thayer WS
    Chem Biol Interact; 1977 Dec; 19(3):265-78. PubMed ID: 202411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free radical production from normal and adriamycin-treated rat cardiac sarcosomes.
    Thornalley PJ; Dodd NJ
    Biochem Pharmacol; 1985 Mar; 34(5):669-74. PubMed ID: 2983734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity.
    Gille L; Nohl H
    Free Radic Biol Med; 1997; 23(5):775-82. PubMed ID: 9296455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NAD(P)H (quinone acceptor) oxidoreductase (DT-diaphorase)-mediated two-electron reduction of anthraquinone-based antitumour agents and generation of hydroxyl radicals.
    Fisher GR; Gutierrez PL; Oldcorne MA; Patterson LH
    Biochem Pharmacol; 1992 Feb; 43(3):575-85. PubMed ID: 1311584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of hydroxyl radical by anticancer quinone drugs, carbazilquinone, mitomycin C, aclacinomycin A and adriamycin, in the presence of NADPH-cytochrome P-450 reductase.
    Komiyama T; Kikuchi T; Sugiura Y
    Biochem Pharmacol; 1982 Nov; 31(22):3651-6. PubMed ID: 6295407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.