These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 3005279)

  • 21. Role of hydrogen peroxide and hydroxyl radical formation in the killing of Ehrlich tumor cells by anticancer quinones.
    Doroshow JH
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4514-8. PubMed ID: 3086887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA base modifications induced in isolated human chromatin by NADH dehydrogenase-catalyzed reduction of doxorubicin.
    Akman SA; Doroshow JH; Burke TG; Dizdaroglu M
    Biochemistry; 1992 Apr; 31(13):3500-6. PubMed ID: 1313297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.
    Moreno SN; Mason RP; Docampo R
    J Biol Chem; 1984 Dec; 259(23):14609-16. PubMed ID: 6094566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction of oxygen by NADH/NADH dehydrogenase in the presence of adriamycin.
    Thornalley PJ; Bannister WH; Bannister JV
    Free Radic Res Commun; 1986; 2(3):163-71. PubMed ID: 2850270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thiol-dependent DNA damage produced by anthracycline-iron complexes. The structure-activity relationships and molecular mechanisms.
    Muindi J; Sinha BK; Gianni L; Myers C
    Mol Pharmacol; 1985 Mar; 27(3):356-65. PubMed ID: 2983184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of hydroxyl radical by iron(III)-anthraquinone complexes through self-reduction and through reductive activation by the xanthine oxidase/hypoxanthine system.
    Malisza KL; Hasinoff BB
    Arch Biochem Biophys; 1995 Aug; 321(1):51-60. PubMed ID: 7639535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. OH.-generation by adriamycin semiquinone and H2O2; an explanation for the cardiotoxicity of anthracycline antibiotics.
    Nohl H; Jordan W
    Biochem Biophys Res Commun; 1983 Jul; 114(1):197-205. PubMed ID: 6309165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S; Kotake Y; Humphries KM
    Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An electron spin resonance study of the reduction of peroxides by anthracycline semiquinones.
    Kalyanaraman B; Sealy RC; Sinha BK
    Biochim Biophys Acta; 1984 Jun; 799(3):270-5. PubMed ID: 6329317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers.
    Mimnaugh EG; Gram TE; Trush MA
    J Pharmacol Exp Ther; 1983 Sep; 226(3):806-16. PubMed ID: 6411900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitomycin C-enhanced superoxide and hydrogen peroxide formation in rat heart.
    Doroshow JH
    J Pharmacol Exp Ther; 1981 Jul; 218(1):206-11. PubMed ID: 6264069
    [No Abstract]   [Full Text] [Related]  

  • 35. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA; Lee CP; Ernster L
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs.
    Kalyanaraman B; Perez-Reyes E; Mason RP
    Biochim Biophys Acta; 1980 Jun; 630(1):119-30. PubMed ID: 6248123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment.
    Kukiełka E; Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A possible role for membrane lipid peroxidation in anthracycline nephrotoxicity.
    Mimnaugh EG; Trush MA; Gram TE
    Biochem Pharmacol; 1986 Dec; 35(23):4327-35. PubMed ID: 3024646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superoxide radical reactions with anthracycline antibiotics.
    Nakazawa H; Andrews PA; Callery PS; Bachur NR
    Biochem Pharmacol; 1985 Feb; 34(4):481-90. PubMed ID: 2982386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The oxidative inactivation of mitochondrial electron transport chain components and ATPase.
    Zhang Y; Marcillat O; Giulivi C; Ernster L; Davies KJ
    J Biol Chem; 1990 Sep; 265(27):16330-6. PubMed ID: 2168888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.