BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 3005287)

  • 1. Amino acid replacements in yeast iso-1-cytochrome c. Comparison with the phylogenetic series and the tertiary structure of related cytochromes c.
    Hampsey DM; Das G; Sherman F
    J Biol Chem; 1986 Mar; 261(7):3259-71. PubMed ID: 3005287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast iso-1-cytochrome c: genetic analysis of structural requirements.
    Hampsey DM; Das G; Sherman F
    FEBS Lett; 1988 Apr; 231(2):275-83. PubMed ID: 2834231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substitutions of proline 76 in yeast iso-1-cytochrome c. Analysis of residues compatible and incompatible with folding requirements.
    Ernst JF; Hampsey DM; Stewart JW; Rackovsky S; Goldstein D; Sherman F
    J Biol Chem; 1985 Oct; 260(24):13225-36. PubMed ID: 2997158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary site and second site revertants of missense mutants of the evolutionarily invariant tryptophan 64 in iso-1-cytochrome c from yeast.
    Schweingruber ME; Stewart JW; Sherman F
    J Biol Chem; 1979 May; 254(10):4132-43. PubMed ID: 220234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletions and replacements of omega loops in yeast iso-1-cytochrome c.
    Fetrow JS; Cardillo TS; Sherman F
    Proteins; 1989; 6(4):372-81. PubMed ID: 2560195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of yeast iso-1-cytochrome c structural requirements: suppression of Gly6 replacements by an Asn52----Ile replacement.
    Berroteran RW; Hampsey M
    Arch Biochem Biophys; 1991 Jul; 288(1):261-9. PubMed ID: 1654826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilizing amino acid replacements at position 52 in yeast iso-1-cytochrome c: in vivo and in vitro effects.
    Linske-O'Connell LI; Sherman F; McLendon G
    Biochemistry; 1995 May; 34(21):7094-102. PubMed ID: 7766619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation.
    Moerschell RP; Hosokawa Y; Tsunasawa S; Sherman F
    J Biol Chem; 1990 Nov; 265(32):19638-43. PubMed ID: 2174047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of yeast cytochromes c dependent and independent on its physiological partners.
    Pearce DA; Sherman F
    Arch Biochem Biophys; 1998 Apr; 352(1):85-96. PubMed ID: 9521820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential stability of two apo-isocytochromes c in the yeast Saccharomyces cerevisiae.
    Dumont MD; Mathews AJ; Nall BT; Baim SB; Eustice DC; Sherman F
    J Biol Chem; 1990 Feb; 265(5):2733-9. PubMed ID: 2154458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase.
    Tsunasawa S; Stewart JW; Sherman F
    J Biol Chem; 1985 May; 260(9):5382-91. PubMed ID: 2985590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and characterization of mutant iso-2-cytochromes c with replacement of conserved prolines.
    Wood LC; Muthukrishnan K; White TB; Ramdas L; Nall BT
    Biochemistry; 1988 Nov; 27(23):8554-61. PubMed ID: 2851327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loop replacement and random mutagenesis of omega-loop D, residues 70-84, in iso-1-cytochrome c.
    Mulligan-Pullyblank P; Spitzer JS; Gilden BM; Fetrow JS
    J Biol Chem; 1996 Apr; 271(15):8633-45. PubMed ID: 8621494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations of iso-1-cytochrome c at positions 13 and 90. Separate effects on physical and functional properties.
    Huang Y; Beeser S; Guillemette JG; Storms RK; Kornblatt JA
    Eur J Biochem; 1994 Jul; 223(1):155-60. PubMed ID: 8033888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dramatic thermostabilization of yeast iso-1-cytochrome c by an asparagine----isoleucine replacement at position 57.
    Das G; Hickey DR; McLendon D; McLendon G; Sherman F
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):496-9. PubMed ID: 2536164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered absorption spectra of iso-1-cytochromes c from mutants of yeast.
    Schweingruber ME; Sherman F; Stewart JW
    J Biol Chem; 1977 Oct; 252(19):6577-80. PubMed ID: 197094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence requirement for trimethylation of yeast cytochrome c.
    Takakura H; Yamamoto T; Sherman F
    Biochemistry; 1997 Mar; 36(9):2642-8. PubMed ID: 9054571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization.
    Pierce MM; Nall BT
    J Mol Biol; 2000 May; 298(5):955-69. PubMed ID: 10801361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mutation allowing an mRNA secondary structure diminishes translation of Saccharomyces cerevisiae iso-1-cytochrome c.
    Baim SB; Pietras DF; Eustice DC; Sherman F
    Mol Cell Biol; 1985 Aug; 5(8):1839-46. PubMed ID: 3018530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of site-specificity of single amino acid substitutions on electrophoretic separation of yeast iso-1-cytochrome c.
    McLellan T; Sherman F
    J Mol Evol; 1991 Oct; 33(4):395-401. PubMed ID: 1663560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.