These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 30053028)
1. Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene. Ebert BE; Czarnotta E; Blank LM FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30053028 [TBL] [Abstract][Full Text] [Related]
2. Metabolic Engineering of Li T; Liu GS; Zhou W; Jiang M; Ren YH; Tao XY; Liu M; Zhao M; Wang FQ; Gao B; Wei DZ J Agric Food Chem; 2020 Feb; 68(7):2132-2138. PubMed ID: 31989819 [TBL] [Abstract][Full Text] [Related]
3. Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae. Lis AV; Schneider K; Weber J; Keasling JD; Jensen MK; Klein T Microb Cell Fact; 2019 Mar; 18(1):50. PubMed ID: 30857529 [TBL] [Abstract][Full Text] [Related]
4. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae. Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412 [TBL] [Abstract][Full Text] [Related]
5. Regulation of Ethanol Assimilation for Efficient Accumulation of Squalene in Zhang Y; Wang W; Wei W; Xia L; Gao S; Zeng W; Liu S; Zhou J J Agric Food Chem; 2023 Apr; 71(16):6389-6397. PubMed ID: 37052370 [TBL] [Abstract][Full Text] [Related]
6. The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Taherzadeh MJ; Lidén G; Gustafsson L; Niklasson C Appl Microbiol Biotechnol; 1996 Sep; 46(2):176-82. PubMed ID: 8987648 [TBL] [Abstract][Full Text] [Related]
7. Further evidence for the existence of a bottleneck in the metabolism of Saccharomyces cerevisiae. Auberson LC; Ramseier CV; Marison IW; von Stockar U Experientia; 1989 Dec; 45(11-12):1013-8. PubMed ID: 2513218 [TBL] [Abstract][Full Text] [Related]
8. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains. Han JY; Seo SH; Song JM; Lee H; Choi ES J Ind Microbiol Biotechnol; 2018 Apr; 45(4):239-251. PubMed ID: 29396745 [TBL] [Abstract][Full Text] [Related]
9. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae. Kwak S; Kim SR; Xu H; Zhang GC; Lane S; Kim H; Jin YS Biotechnol Bioeng; 2017 Nov; 114(11):2581-2591. PubMed ID: 28667762 [TBL] [Abstract][Full Text] [Related]
10. Physiological characterisation of a pyruvate-carboxylase-negative Saccharomyces cerevisiae mutant in batch and chemostat cultures. de Jong-Gubbels P; Bauer J; Niederberger P; Stückrath I; Kötter P; van Dijken JP; Pronk JT Antonie Van Leeuwenhoek; 1998 Nov; 74(4):253-63. PubMed ID: 10081585 [TBL] [Abstract][Full Text] [Related]
11. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase. Kozak BU; van Rossum HM; Niemeijer MS; van Dijk M; Benjamin K; Wu L; Daran JM; Pronk JT; van Maris AJ FEMS Yeast Res; 2016 Mar; 16(2):fow006. PubMed ID: 26818854 [TBL] [Abstract][Full Text] [Related]
12. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect. Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548 [TBL] [Abstract][Full Text] [Related]
13. Amino acid supplementation improves heterologous protein production by Saccharomyces cerevisiae in defined medium. Görgens JF; van Zyl WH; Knoetze JH; Hahn-Hägerdal B Appl Microbiol Biotechnol; 2005 Jun; 67(5):684-91. PubMed ID: 15630584 [TBL] [Abstract][Full Text] [Related]
14. Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient-limitation. Basso TO; Dario MG; Tonso A; Stambuk BU; Gombert AK Biotechnol Lett; 2010 Jul; 32(7):973-7. PubMed ID: 20349336 [TBL] [Abstract][Full Text] [Related]
15. Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae. Seker T; Møller K; Nielsen J Appl Microbiol Biotechnol; 2005 Apr; 67(1):119-24. PubMed ID: 15448940 [TBL] [Abstract][Full Text] [Related]
16. Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess. Mantzouridou F; Naziri E; Tsimidou MZ J Agric Food Chem; 2009 Jul; 57(14):6189-98. PubMed ID: 19537785 [TBL] [Abstract][Full Text] [Related]
17. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae. Kumar K; Venkatraman V; Bruheim P Microb Cell Fact; 2021 Mar; 20(1):64. PubMed ID: 33750414 [TBL] [Abstract][Full Text] [Related]
18. Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae. Paramasivan K; Mutturi S J Agric Food Chem; 2017 Sep; 65(37):8162-8170. PubMed ID: 28845666 [TBL] [Abstract][Full Text] [Related]
19. Studies on Squalene Biosynthesis and the Standardization of Its Extraction Methodology from Saccharomyces cerevisiae. Paramasivan K; Rajagopal K; Mutturi S Appl Biochem Biotechnol; 2019 Mar; 187(3):691-707. PubMed ID: 30039474 [TBL] [Abstract][Full Text] [Related]
20. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]