These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 30053068)
21. In vivo commitment to splicing in yeast involves the nucleotide upstream from the branch site conserved sequence and the Mud2 protein. Rain JC; Legrain P EMBO J; 1997 Apr; 16(7):1759-71. PubMed ID: 9130720 [TBL] [Abstract][Full Text] [Related]
22. Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex. Ellisdon AM; Dimitrova L; Hurt E; Stewart M Nat Struct Mol Biol; 2012 Feb; 19(3):328-36. PubMed ID: 22343721 [TBL] [Abstract][Full Text] [Related]
23. A BBP-Mud2p heterodimer mediates branchpoint recognition and influences splicing substrate abundance in budding yeast. Wang Q; Zhang L; Lynn B; Rymond BC Nucleic Acids Res; 2008 May; 36(8):2787-98. PubMed ID: 18375978 [TBL] [Abstract][Full Text] [Related]
24. Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for sub2, an essential spliceosomal ATPase. Kistler AL; Guthrie C Genes Dev; 2001 Jan; 15(1):42-9. PubMed ID: 11156604 [TBL] [Abstract][Full Text] [Related]
25. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila. Hur JK; Luo Y; Moon S; Ninova M; Marinov GK; Chung YD; Aravin AA Genes Dev; 2016 Apr; 30(7):840-55. PubMed ID: 27036967 [TBL] [Abstract][Full Text] [Related]
26. Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription. Gwizdek C; Iglesias N; Rodriguez MS; Ossareh-Nazari B; Hobeika M; Divita G; Stutz F; Dargemont C Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16376-81. PubMed ID: 17056718 [TBL] [Abstract][Full Text] [Related]
27. Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrb1 to nascent mRNA via the TREX complex. Hurt E; Luo MJ; Röther S; Reed R; Strässer K Proc Natl Acad Sci U S A; 2004 Feb; 101(7):1858-62. PubMed ID: 14769921 [TBL] [Abstract][Full Text] [Related]
28. The yeast splicing factor Mud13p is a commitment complex component and corresponds to CBP20, the small subunit of the nuclear cap-binding complex. Colot HV; Stutz F; Rosbash M Genes Dev; 1996 Jul; 10(13):1699-708. PubMed ID: 8682299 [TBL] [Abstract][Full Text] [Related]
29. The yeast MUD2 protein: an interaction with PRP11 defines a bridge between commitment complexes and U2 snRNP addition. Abovich N; Liao XC; Rosbash M Genes Dev; 1994 Apr; 8(7):843-54. PubMed ID: 7926772 [TBL] [Abstract][Full Text] [Related]
30. Distinct Functions of the Cap-Binding Complex in Stimulation of Nuclear mRNA Export. Sen R; Barman P; Kaja A; Ferdoush J; Lahudkar S; Roy A; Bhaumik SR Mol Cell Biol; 2019 Apr; 39(8):. PubMed ID: 30745412 [TBL] [Abstract][Full Text] [Related]
31. The Nuclear Pore-Associated TREX-2 Complex Employs Mediator to Regulate Gene Expression. Schneider M; Hellerschmied D; Schubert T; Amlacher S; Vinayachandran V; Reja R; Pugh BF; Clausen T; Köhler A Cell; 2015 Aug; 162(5):1016-28. PubMed ID: 26317468 [TBL] [Abstract][Full Text] [Related]
32. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. Vinciguerra P; Iglesias N; Camblong J; Zenklusen D; Stutz F EMBO J; 2005 Feb; 24(4):813-23. PubMed ID: 15692572 [TBL] [Abstract][Full Text] [Related]
33. The human TREX-2 complex is stably associated with the nuclear pore basket. Umlauf D; Bonnet J; Waharte F; Fournier M; Stierle M; Fischer B; Brino L; Devys D; Tora L J Cell Sci; 2013 Jun; 126(Pt 12):2656-67. PubMed ID: 23591820 [TBL] [Abstract][Full Text] [Related]
34. A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions. Santos-Pereira JM; García-Rubio ML; González-Aguilera C; Luna R; Aguilera A Nucleic Acids Res; 2014 Oct; 42(19):12000-14. PubMed ID: 25294824 [TBL] [Abstract][Full Text] [Related]
35. Differential recruitment of the splicing machinery during transcription predicts genome-wide patterns of mRNA splicing. Moore MJ; Schwartzfarb EM; Silver PA; Yu MC Mol Cell; 2006 Dec; 24(6):903-15. PubMed ID: 17189192 [TBL] [Abstract][Full Text] [Related]
36. The m Lesbirel S; Viphakone N; Parker M; Parker J; Heath C; Sudbery I; Wilson SA Sci Rep; 2018 Sep; 8(1):13827. PubMed ID: 30218090 [TBL] [Abstract][Full Text] [Related]
37. New clues to understand the role of THO and other functionally related factors in mRNP biogenesis. Luna R; Rondón AG; Aguilera A Biochim Biophys Acta; 2012 Jun; 1819(6):514-20. PubMed ID: 22207203 [TBL] [Abstract][Full Text] [Related]
38. Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability. Mazroui R; Puoti A; Krämer A RNA; 1999 Dec; 5(12):1615-31. PubMed ID: 10606272 [TBL] [Abstract][Full Text] [Related]
39. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Abovich N; Rosbash M Cell; 1997 May; 89(3):403-12. PubMed ID: 9150140 [TBL] [Abstract][Full Text] [Related]
40. Genome-wide analysis reveals an unexpected function for the Drosophila splicing factor U2AF50 in the nuclear export of intronless mRNAs. Blanchette M; Labourier E; Green RE; Brenner SE; Rio DC Mol Cell; 2004 Jun; 14(6):775-86. PubMed ID: 15200955 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]