BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30053116)

  • 1. From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective.
    Liu S; Zhang L; Quan H; Tian H; Meng L; Yang L; Feng H; Gao YQ
    Nucleic Acids Res; 2018 Oct; 46(18):9367-9383. PubMed ID: 30053116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progressive Domain Segregation in Early Embryonic Development and Underlying Correlation to Genetic and Epigenetic Changes.
    Quan H; Tian H; Liu S; Xue Y; Zhang Y; Xie W; Gao YQ
    Cells; 2021 Sep; 10(10):. PubMed ID: 34685501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DNA Sequence Based Polymer Model for Chromatin Folding.
    Zhou R; Gao YQ
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33572740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic memories: structural marks or active circuits?
    Nicol-Benoît F; Le-Goff P; Le-Dréan Y; Demay F; Pakdel F; Flouriot G; Michel D
    Cell Mol Life Sci; 2012 Jul; 69(13):2189-203. PubMed ID: 22331281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic Transitions and Knotted Solitons in Stretched Chromatin.
    Michieletto D; Orlandini E; Marenduzzo D
    Sci Rep; 2017 Nov; 7(1):14642. PubMed ID: 29116102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Modeling of Cellular Epigenetic States: Stochasticity in Molecular Networks, Chromatin Folding in Cell Nuclei, and Tissue Pattern Formation of Cells.
    Liang J; Cao Y; Gursoy G; Naveed H; Terebus A; Zhao J
    Crit Rev Biomed Eng; 2015; 43(4):323-46. PubMed ID: 27480462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using measures of single-cell physiology and physiological state to understand organismic aging.
    Mendenhall A; Driscoll M; Brent R
    Aging Cell; 2016 Feb; 15(1):4-13. PubMed ID: 26616110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA polymerase II clustering through carboxy-terminal domain phase separation.
    Boehning M; Dugast-Darzacq C; Rankovic M; Hansen AS; Yu T; Marie-Nelly H; McSwiggen DT; Kokic G; Dailey GM; Cramer P; Darzacq X; Zweckstetter M
    Nat Struct Mol Biol; 2018 Sep; 25(9):833-840. PubMed ID: 30127355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-Generation Drugs and Probes for Chromatin Biology: From Targeted Protein Degradation to Phase Separation.
    Cermakova K; Hodges HC
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30082609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organizational principles of 3D genome architecture.
    Rowley MJ; Corces VG
    Nat Rev Genet; 2018 Dec; 19(12):789-800. PubMed ID: 30367165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations.
    Cook PR; Marenduzzo D
    Nucleic Acids Res; 2018 Nov; 46(19):9895-9906. PubMed ID: 30239812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FACER: comprehensive molecular and functional characterization of epigenetic chromatin regulators.
    Lu J; Xu J; Li J; Pan T; Bai J; Wang L; Jin X; Lin X; Zhang Y; Li Y; Sahni N; Li X
    Nucleic Acids Res; 2018 Nov; 46(19):10019-10033. PubMed ID: 30102398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution visualization of H3 variants during replication reveals their controlled recycling.
    Clément C; Orsi GA; Gatto A; Boyarchuk E; Forest A; Hajj B; Miné-Hattab J; Garnier M; Gurard-Levin ZA; Quivy JP; Almouzni G
    Nat Commun; 2018 Aug; 9(1):3181. PubMed ID: 30093638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two main stream methods analysis and visual 3D genome architecture.
    Fu S; Zhang L; Lv J; Zhu B; Wang W; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():43-53. PubMed ID: 30059749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-salt-recovered sequences are associated with the active chromosomal compartment and with large ribonucleoprotein complexes including nuclear bodies.
    Baudement MO; Cournac A; Court F; Seveno M; Parrinello H; Reynes C; Sabatier R; Bouschet T; Yi Z; Sallis S; Tancelin M; Rebouissou C; Cathala G; Lesne A; Mozziconacci J; Journot L; Forné T
    Genome Res; 2018 Nov; 28(11):1733-1746. PubMed ID: 30287550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and guidelines toward 4D nucleome data and model standards.
    Marti-Renom MA; Almouzni G; Bickmore WA; Bystricky K; Cavalli G; Fraser P; Gasser SM; Giorgetti L; Heard E; Nicodemi M; Nollmann M; Orozco M; Pombo A; Torres-Padilla ME
    Nat Genet; 2018 Oct; 50(10):1352-1358. PubMed ID: 30262815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interphase human chromosome exhibits out of equilibrium glassy dynamics.
    Shi G; Liu L; Hyeon C; Thirumalai D
    Nat Commun; 2018 Aug; 9(1):3161. PubMed ID: 30089831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome.
    Shin Y; Chang YC; Lee DSW; Berry J; Sanders DW; Ronceray P; Wingreen NS; Haataja M; Brangwynne CP
    Cell; 2018 Nov; 175(6):1481-1491.e13. PubMed ID: 30500535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone Modifications Regulate Chromatin Compartmentalization by Contributing to a Phase Separation Mechanism.
    Wang L; Gao Y; Zheng X; Liu C; Dong S; Li R; Zhang G; Wei Y; Qu H; Li Y; Allis CD; Li G; Li H; Li P
    Mol Cell; 2019 Nov; 76(4):646-659.e6. PubMed ID: 31543422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of Chromatin by Intrinsic and Regulated Phase Separation.
    Gibson BA; Doolittle LK; Schneider MWG; Jensen LE; Gamarra N; Henry L; Gerlich DW; Redding S; Rosen MK
    Cell; 2019 Oct; 179(2):470-484.e21. PubMed ID: 31543265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.