BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 30053258)

  • 41. Rethinking the microprocessor.
    Seitz H; Zamore PD
    Cell; 2006 Jun; 125(5):827-9. PubMed ID: 16751089
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Association of a peptoid ligand with the apical loop of pri-miR-21 inhibits cleavage by Drosha.
    Diaz JP; Chirayil R; Chirayil S; Tom M; Head KJ; Luebke KJ
    RNA; 2014 Apr; 20(4):528-39. PubMed ID: 24497550
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural Differences between Pri-miRNA Paralogs Promote Alternative Drosha Cleavage and Expand Target Repertoires.
    Bofill-De Ros X; Kasprzak WK; Bhandari Y; Fan L; Cavanaugh Q; Jiang M; Dai L; Yang A; Shao TJ; Shapiro BA; Wang YX; Gu S
    Cell Rep; 2019 Jan; 26(2):447-459.e4. PubMed ID: 30625327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance.
    Jiang Q; Meng X; Meng L; Chang N; Xiong J; Cao H; Liang Z
    RNA Biol; 2014; 11(10):1243-9. PubMed ID: 25590615
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency.
    Kim Y; Kang YS; Lee NY; Kim KY; Hwang YJ; Kim HW; Rhyu IJ; Her S; Jung MK; Kim S; Lee CJ; Ko S; Kowall NW; Lee SB; Lee J; Ryu H
    Autophagy; 2015; 11(5):796-811. PubMed ID: 25946189
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Autoregulatory mechanisms controlling the microprocessor.
    Triboulet R; Gregory RI
    Adv Exp Med Biol; 2011; 700():56-66. PubMed ID: 21755473
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis.
    Landthaler M; Yalcin A; Tuschl T
    Curr Biol; 2004 Dec; 14(23):2162-7. PubMed ID: 15589161
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a.
    Le CT; Nguyen TL; Nguyen TD; Nguyen TA
    RNA; 2020 Dec; 26(12):1777-1786. PubMed ID: 32994184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Post-transcriptional control of miRNA biogenesis.
    Michlewski G; Cáceres JF
    RNA; 2019 Jan; 25(1):1-16. PubMed ID: 30333195
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genomic Clustering Facilitates Nuclear Processing of Suboptimal Pri-miRNA Loci.
    Shang R; Baek SC; Kim K; Kim B; Kim VN; Lai EC
    Mol Cell; 2020 Apr; 78(2):303-316.e4. PubMed ID: 32302542
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Autoregulatory mechanisms controlling the Microprocessor.
    Triboulet R; Gregory RI
    Adv Exp Med Biol; 2010; 700():56-66. PubMed ID: 21627030
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The insertion in the double-stranded RNA binding domain of human Drosha is important for its function.
    Zhang X; Li P; Lin J; Huang H; Yin B; Zeng Y
    Biochim Biophys Acta Gene Regul Mech; 2017 Dec; 1860(12):1179-1188. PubMed ID: 29109067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. siRNA release from pri-miRNA scaffolds is controlled by the sequence and structure of RNA.
    Galka-Marciniak P; Olejniczak M; Starega-Roslan J; Szczesniak MW; Makalowska I; Krzyzosiak WJ
    Biochim Biophys Acta; 2016 Apr; 1859(4):639-49. PubMed ID: 26921501
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Ewing sarcoma protein regulates DNA damage-induced alternative splicing.
    Paronetto MP; Miñana B; Valcárcel J
    Mol Cell; 2011 Aug; 43(3):353-68. PubMed ID: 21816343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytoplasmic Drosha activity generated by alternative splicing.
    Dai L; Chen K; Youngren B; Kulina J; Yang A; Guo Z; Li J; Yu P; Gu S
    Nucleic Acids Res; 2016 Dec; 44(21):10454-10466. PubMed ID: 27471035
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs.
    Partin AC; Ngo TD; Herrell E; Jeong BC; Hon G; Nam Y
    Nat Commun; 2017 Nov; 8(1):1737. PubMed ID: 29170488
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pri-miRNA cleavage assays for the Microprocessor complex.
    Le TN; Le CT; Nguyen TA
    Methods Enzymol; 2023; 692():217-230. PubMed ID: 37925180
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing.
    Nakamura T; Canaani E; Croce CM
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10980-5. PubMed ID: 17581865
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway.
    Sakamoto S; Aoki K; Higuchi T; Todaka H; Morisawa K; Tamaki N; Hatano E; Fukushima A; Taniguchi T; Agata Y
    Mol Cell Biol; 2009 Jul; 29(13):3754-69. PubMed ID: 19398578
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A quantitative map of human primary microRNA processing sites.
    Kim K; Baek SC; Lee YY; Bastiaanssen C; Kim J; Kim H; Kim VN
    Mol Cell; 2021 Aug; 81(16):3422-3439.e11. PubMed ID: 34320405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.