These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 3005327)
1. Comparison between calcium transport and adenosine triphosphatase activity in membrane vesicles derived from rabbit kidney proximal tubules. Vieyra A; Nachbin L; de Dios-Abad E; Goldfeld M; Meyer-Fernandes JR; de Moraes L J Biol Chem; 1986 Mar; 261(9):4247-55. PubMed ID: 3005327 [TBL] [Abstract][Full Text] [Related]
2. Novel ATP-dependent calcium transport component from rat liver plasma membranes. The transporter and the previously reported (Ca2+-Mg2+)-ATPase are different proteins. Lin SH J Biol Chem; 1985 Jul; 260(13):7850-6. PubMed ID: 2409077 [TBL] [Abstract][Full Text] [Related]
3. Reversible inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid of the plasma membrane (Ca(2+)+Mg2+)ATPase from kidney proximal tubules. Guilherme A; Meyer-Fernandes JR; Vieyra A Biochemistry; 1991 Jun; 30(23):5700-6. PubMed ID: 1828368 [TBL] [Abstract][Full Text] [Related]
4. Novel effects of calmodulin and calmodulin antagonists on the plasma membrane (Ca2+ + Mg2+)-ATPase from rabbit kidney proximal tubules. Coelho-Sampaio T; Teixeira-Ferreira A; Vieyra A J Biol Chem; 1991 Jun; 266(16):10249-53. PubMed ID: 1828069 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of Ca2+ transport in plasma membrane vesicles prepared from cultured pituitary cells. II. (Ca2+ + Mg2+)-ATPase-dependent Ca2+ transport activity. Barros F; Kaczorowski GJ J Biol Chem; 1984 Aug; 259(15):9404-10. PubMed ID: 6146614 [TBL] [Abstract][Full Text] [Related]
6. Calcium and magnesium regulation of phosphorylation by ATP and ITP in sarcoplasmic reticulum vesicles. Souza DO; de Meis L J Biol Chem; 1976 Oct; 251(20):6355-9. PubMed ID: 185211 [TBL] [Abstract][Full Text] [Related]
7. The substitution of calcium for magnesium in H+,K+-ATPase catalytic cycle. Evidence for two actions of divalent cations. Mendlein J; Sachs G J Biol Chem; 1989 Nov; 264(31):18512-9. PubMed ID: 2553712 [TBL] [Abstract][Full Text] [Related]
8. Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthias. Hilden S; Hokin LE J Biol Chem; 1975 Aug; 250(16):6296-303. PubMed ID: 125752 [TBL] [Abstract][Full Text] [Related]
9. Characterization of ATP-dependent Ca2+ transport in the basolateral membrane vesicles from proximal and distal tubules of the rabbit kidney. Ramachandran C; Chan M; Brunette MG Biochem Cell Biol; 1991; 69(2-3):109-14. PubMed ID: 1827714 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of Mg2+-dependent, ATP-activated Ca2+ transport in synaptic and microsomal membranes and in permeabilized synaptosomes. Michaelis ML; Kitos TE; Nunley EW; Lecluyse E; Michaelis EK J Biol Chem; 1987 Mar; 262(9):4182-9. PubMed ID: 2951384 [TBL] [Abstract][Full Text] [Related]
11. ATP in equilibrium with 32Pi exchange catalyzed by plasma membrane Ca(2+)-ATPase from kidney proximal tubules. Vieyra A; Caruso-Neves C; Meyer-Fernandes JR J Biol Chem; 1991 Jun; 266(16):10324-30. PubMed ID: 1828070 [TBL] [Abstract][Full Text] [Related]
12. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. Shigekawa M; Finegan JA; Katz AM J Biol Chem; 1976 Nov; 251(22):6894-900. PubMed ID: 11210 [TBL] [Abstract][Full Text] [Related]
13. Ca2+-stimulated, Mg2+-independent ATP hydrolysis and the high affinity Ca2+-pumping ATPase. Two different activities in rat kidney basolateral membranes. Ghijsen W; Gmaj P; Murer H Biochim Biophys Acta; 1984 Dec; 778(3):481-8. PubMed ID: 6239653 [TBL] [Abstract][Full Text] [Related]
14. Calcium binding to the H+,K(+)-ATPase. Evidence for a divalent cation site that is occupied during the catalytic cycle. Mendlein J; Ditmars ML; Sachs G J Biol Chem; 1990 Sep; 265(26):15590-8. PubMed ID: 2168418 [TBL] [Abstract][Full Text] [Related]
15. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum. Berman MC; McIntosh DB; Kench JE J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the high and low affinity components of the renal Ca2(+)-Mg2+ ATPase. Brunette MG; Mailloux J; Chan M; Ramachandran C Can J Physiol Pharmacol; 1990 Jun; 68(6):718-26. PubMed ID: 2142616 [TBL] [Abstract][Full Text] [Related]
17. Effect of metal bound to the substrate site on calcium release from the phosphoenzyme intermediate of sarcoplasmic reticulum ATPase. Wakabayashi S; Shigekawa M J Biol Chem; 1987 Aug; 262(24):11524-31. PubMed ID: 2957367 [TBL] [Abstract][Full Text] [Related]
18. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex. van Heeswijk MP; Geertsen JA; van Os CH J Membr Biol; 1984; 79(1):19-31. PubMed ID: 6737462 [TBL] [Abstract][Full Text] [Related]
19. Calcium transport and calcium-ATPase activity in human lymphocyte plasma membrane vesicles. Lichtman AH; Segel GB; Lichtman MA J Biol Chem; 1981 Jun; 256(12):6148-54. PubMed ID: 6453867 [TBL] [Abstract][Full Text] [Related]