BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30053492)

  • 1. Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains.
    Luo YS; Hsieh NH; Soldatow VY; Chiu WA; Rusyn I
    Toxicology; 2018 Nov; 409():33-43. PubMed ID: 30053492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism and Toxicity of Trichloroethylene and Tetrachloroethylene in Cytochrome P450 2E1 Knockout and Humanized Transgenic Mice.
    Luo YS; Furuya S; Soldatov VY; Kosyk O; Yoo HS; Fukushima H; Lewis L; Iwata Y; Rusyn I
    Toxicol Sci; 2018 Aug; 164(2):489-500. PubMed ID: 29897530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Editor's Highlight: Comparative Dose-Response Analysis of Liver and Kidney Transcriptomic Effects of Trichloroethylene and Tetrachloroethylene in B6C3F1 Mouse.
    Zhou YH; Cichocki JA; Soldatow VY; Scholl EH; Gallins PJ; Jima D; Yoo HS; Chiu WA; Wright FA; Rusyn I
    Toxicol Sci; 2017 Nov; 160(1):95-110. PubMed ID: 28973375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Editor's Highlight: Collaborative Cross Mouse Population Enables Refinements to Characterization of the Variability in Toxicokinetics of Trichloroethylene and Provides Genetic Evidence for the Role of PPAR Pathway in Its Oxidative Metabolism.
    Venkatratnam A; Furuya S; Kosyk O; Gold A; Bodnar W; Konganti K; Threadgill DW; Gillespie KM; Aylor DL; Wright FA; Chiu WA; Rusyn I
    Toxicol Sci; 2017 Jul; 158(1):48-62. PubMed ID: 28369613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: liver effects.
    Yoo HS; Bradford BU; Kosyk O; Shymonyak S; Uehara T; Collins LB; Bodnar WM; Ball LM; Gold A; Rusyn I
    J Toxicol Environ Health A; 2015; 78(1):15-31. PubMed ID: 25424544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: kidney effects.
    Yoo HS; Bradford BU; Kosyk O; Uehara T; Shymonyak S; Collins LB; Bodnar WM; Ball LM; Gold A; Rusyn I
    J Toxicol Environ Health A; 2015; 78(1):32-49. PubMed ID: 25424545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target Organ Metabolism, Toxicity, and Mechanisms of Trichloroethylene and Perchloroethylene: Key Similarities, Differences, and Data Gaps.
    Cichocki JA; Guyton KZ; Guha N; Chiu WA; Rusyn I; Lash LH
    J Pharmacol Exp Ther; 2016 Oct; 359(1):110-23. PubMed ID: 27511820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of the glutathione conjugation pathway in an updated physiologically-based pharmacokinetic model for perchloroethylene in mice.
    Dalaijamts C; Cichocki JA; Luo YS; Rusyn I; Chiu WA
    Toxicol Appl Pharmacol; 2018 Aug; 352():142-152. PubMed ID: 29857080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane.
    Dobrev ID; Andersen ME; Yang RS
    Environ Health Perspect; 2002 Oct; 110(10):1031-9. PubMed ID: 12361929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse.
    Chiu WA; Campbell JL; Clewell HJ; Zhou YH; Wright FA; Guyton KZ; Rusyn I
    Environ Health Perspect; 2014 May; 122(5):456-63. PubMed ID: 24518055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reanalysis of Trichloroethylene and Tetrachloroethylene Metabolism to Glutathione Conjugates Using Human, Rat, and Mouse Liver
    Valdiviezo A; Brown GE; Michell AR; Trinconi CM; Bodke VV; Khetani SR; Luo YS; Chiu WA; Rusyn I
    Environ Health Perspect; 2022 Nov; 130(11):117009. PubMed ID: 36445294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiologically based pharmacokinetic modeling of inhaled trichloroethylene and its oxidative metabolites in B6C3F1 mice.
    Greenberg MS; Burton GA; Fisher JW
    Toxicol Appl Pharmacol; 1999 Feb; 154(3):264-78. PubMed ID: 9931286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine.
    Kim S; Kim D; Pollack GM; Collins LB; Rusyn I
    Toxicol Appl Pharmacol; 2009 Jul; 238(1):90-9. PubMed ID: 19409406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physiologically based pharmacokinetic model for trichloroethylene and its metabolites, chloral hydrate, trichloroacetate, dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1 mice.
    Abbas R; Fisher JW
    Toxicol Appl Pharmacol; 1997 Nov; 147(1):15-30. PubMed ID: 9356303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicokinetics of inhaled trichloroethylene and tetrachloroethylene in humans at 1 ppm: empirical results and comparisons with previous studies.
    Chiu WA; Micallef S; Monster AC; Bois FY
    Toxicol Sci; 2007 Jan; 95(1):23-36. PubMed ID: 17032701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach.
    Chiu WA; Okino MS; Evans MV
    Toxicol Appl Pharmacol; 2009 Nov; 241(1):36-60. PubMed ID: 19660485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of trichloroethylene.
    Lash LH; Fisher JW; Lipscomb JC; Parker JC
    Environ Health Perspect; 2000 May; 108 Suppl 2(Suppl 2):177-200. PubMed ID: 10807551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing effects of trichloroethylene and tetrachloroethylene on type I allergic responses in mice.
    Seo M; Kobayashi R; Okamura T; Ikeda K; Satoh M; Inagaki N; Nagai H; Nagase H
    J Toxicol Sci; 2012; 37(2):439-45. PubMed ID: 22467035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly.
    Evans MV; Chiu WA; Okino MS; Caldwell JC
    Toxicol Appl Pharmacol; 2009 May; 236(3):329-40. PubMed ID: 19249323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene.
    Luo YS; Cichocki JA; Hsieh NH; Lewis L; Wright FA; Threadgill DW; Chiu WA; Rusyn I
    Environ Health Perspect; 2019 Jun; 127(6):67011. PubMed ID: 31246107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.