These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 3005364)
1. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells. Heinecke JW; Baker L; Rosen H; Chait A J Clin Invest; 1986 Mar; 77(3):757-61. PubMed ID: 3005364 [TBL] [Abstract][Full Text] [Related]
2. The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. Heinecke JW; Rosen H; Suzuki LA; Chait A J Biol Chem; 1987 Jul; 262(21):10098-103. PubMed ID: 3038867 [TBL] [Abstract][Full Text] [Related]
3. Role of superoxide in endothelial-cell modification of low-density lipoproteins. Steinbrecher UP Biochim Biophys Acta; 1988 Mar; 959(1):20-30. PubMed ID: 2830901 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms. Heinecke JW; Kawamura M; Suzuki L; Chait A J Lipid Res; 1993 Dec; 34(12):2051-61. PubMed ID: 8301226 [TBL] [Abstract][Full Text] [Related]
5. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant. Mukhopadhyay CK; Fox PL Biochemistry; 1998 Oct; 37(40):14222-9. PubMed ID: 9760260 [TBL] [Abstract][Full Text] [Related]
6. Ceruloplasmin enhances smooth muscle cell- and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism. Mukhopadhyay CK; Ehrenwald E; Fox PL J Biol Chem; 1996 Jun; 271(25):14773-8. PubMed ID: 8663020 [TBL] [Abstract][Full Text] [Related]
7. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway. Kawamura M; Heinecke JW; Chait A J Clin Invest; 1994 Aug; 94(2):771-8. PubMed ID: 8040332 [TBL] [Abstract][Full Text] [Related]
8. Oxidative modification of low density lipoproteins by human polymorphonuclear leukocytes. Wieland E; Brandes A; Armstrong VW; Oellerich M Eur J Clin Chem Clin Biochem; 1993 Nov; 31(11):725-31. PubMed ID: 8305616 [TBL] [Abstract][Full Text] [Related]
9. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Burkitt MJ Arch Biochem Biophys; 2001 Oct; 394(1):117-35. PubMed ID: 11566034 [TBL] [Abstract][Full Text] [Related]
10. Superoxide anion participation in human monocyte-mediated oxidation of low-density lipoprotein and conversion of low-density lipoprotein to a cytotoxin. Cathcart MK; McNally AK; Morel DW; Chisolm GM J Immunol; 1989 Mar; 142(6):1963-9. PubMed ID: 2537865 [TBL] [Abstract][Full Text] [Related]
11. [The peroxidation of human glycosylated low-density lipoproteins is mediated by the superoxide radical: the protective effects of superoxide dismutase]. Napoli C; Ambrosio G; Palumbo G; Chiariello P; Duilio C; Chiariello M Cardiologia; 1994 May; 39(5):345-52. PubMed ID: 8087816 [TBL] [Abstract][Full Text] [Related]
12. Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. Heinecke JW; Rosen H; Chait A J Clin Invest; 1984 Nov; 74(5):1890-4. PubMed ID: 6501577 [TBL] [Abstract][Full Text] [Related]
13. Stretch force on vascular smooth muscle cells enhances oxidation of LDL via superoxide production. Inoue N; Kawashima S; Hirata KI; Rikitake Y; Takeshita S; Yamochi W; Akita H; Yokoyama M Am J Physiol; 1998 Jun; 274(6):H1928-32. PubMed ID: 9841520 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein. Lynch SM; Frei B J Lipid Res; 1993 Oct; 34(10):1745-53. PubMed ID: 8245725 [TBL] [Abstract][Full Text] [Related]
15. The oxidative modification of low-density lipoproteins by macrophages. Leake DS; Rankin SM Biochem J; 1990 Sep; 270(3):741-8. PubMed ID: 2122885 [TBL] [Abstract][Full Text] [Related]
16. Lipoprotein degradation and cholesterol esterification in primary cell cultures of rabbit atherosclerotic lesions. Jaakkola O; Nikkari T Am J Pathol; 1990 Aug; 137(2):457-65. PubMed ID: 2201201 [TBL] [Abstract][Full Text] [Related]
17. Does superoxide radical have a role in macrophage-mediated oxidative modification of LDL? Jessup W; Simpson JA; Dean RT Atherosclerosis; 1993 Feb; 99(1):107-20. PubMed ID: 8384855 [TBL] [Abstract][Full Text] [Related]
18. Chylomicron-remnant-induced foam cell formation and cytotoxicity: a possible mechanism of cell death in atherosclerosis. Yu KC; Mamo JC Clin Sci (Lond); 2000 Feb; 98(2):183-92. PubMed ID: 10657274 [TBL] [Abstract][Full Text] [Related]
19. The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification. Hwang J; Wang J; Morazzoni P; Hodis HN; Sevanian A Free Radic Biol Med; 2003 May; 34(10):1271-82. PubMed ID: 12726915 [TBL] [Abstract][Full Text] [Related]
20. Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors. Lin SJ; Shyue SK; Shih MC; Chu TH; Chen YH; Ku HH; Chen JW; Tam KB; Chen YL Atherosclerosis; 2007 Jan; 190(1):124-34. PubMed ID: 16600249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]