BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 3005364)

  • 1. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells.
    Heinecke JW; Baker L; Rosen H; Chait A
    J Clin Invest; 1986 Mar; 77(3):757-61. PubMed ID: 3005364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells.
    Heinecke JW; Rosen H; Suzuki LA; Chait A
    J Biol Chem; 1987 Jul; 262(21):10098-103. PubMed ID: 3038867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of superoxide in endothelial-cell modification of low-density lipoproteins.
    Steinbrecher UP
    Biochim Biophys Acta; 1988 Mar; 959(1):20-30. PubMed ID: 2830901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms.
    Heinecke JW; Kawamura M; Suzuki L; Chait A
    J Lipid Res; 1993 Dec; 34(12):2051-61. PubMed ID: 8301226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant.
    Mukhopadhyay CK; Fox PL
    Biochemistry; 1998 Oct; 37(40):14222-9. PubMed ID: 9760260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ceruloplasmin enhances smooth muscle cell- and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism.
    Mukhopadhyay CK; Ehrenwald E; Fox PL
    J Biol Chem; 1996 Jun; 271(25):14773-8. PubMed ID: 8663020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway.
    Kawamura M; Heinecke JW; Chait A
    J Clin Invest; 1994 Aug; 94(2):771-8. PubMed ID: 8040332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative modification of low density lipoproteins by human polymorphonuclear leukocytes.
    Wieland E; Brandes A; Armstrong VW; Oellerich M
    Eur J Clin Chem Clin Biochem; 1993 Nov; 31(11):725-31. PubMed ID: 8305616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin.
    Burkitt MJ
    Arch Biochem Biophys; 2001 Oct; 394(1):117-35. PubMed ID: 11566034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide anion participation in human monocyte-mediated oxidation of low-density lipoprotein and conversion of low-density lipoprotein to a cytotoxin.
    Cathcart MK; McNally AK; Morel DW; Chisolm GM
    J Immunol; 1989 Mar; 142(6):1963-9. PubMed ID: 2537865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The peroxidation of human glycosylated low-density lipoproteins is mediated by the superoxide radical: the protective effects of superoxide dismutase].
    Napoli C; Ambrosio G; Palumbo G; Chiariello P; Duilio C; Chiariello M
    Cardiologia; 1994 May; 39(5):345-52. PubMed ID: 8087816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture.
    Heinecke JW; Rosen H; Chait A
    J Clin Invest; 1984 Nov; 74(5):1890-4. PubMed ID: 6501577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretch force on vascular smooth muscle cells enhances oxidation of LDL via superoxide production.
    Inoue N; Kawashima S; Hirata KI; Rikitake Y; Takeshita S; Yamochi W; Akita H; Yokoyama M
    Am J Physiol; 1998 Jun; 274(6):H1928-32. PubMed ID: 9841520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein.
    Lynch SM; Frei B
    J Lipid Res; 1993 Oct; 34(10):1745-53. PubMed ID: 8245725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oxidative modification of low-density lipoproteins by macrophages.
    Leake DS; Rankin SM
    Biochem J; 1990 Sep; 270(3):741-8. PubMed ID: 2122885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipoprotein degradation and cholesterol esterification in primary cell cultures of rabbit atherosclerotic lesions.
    Jaakkola O; Nikkari T
    Am J Pathol; 1990 Aug; 137(2):457-65. PubMed ID: 2201201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does superoxide radical have a role in macrophage-mediated oxidative modification of LDL?
    Jessup W; Simpson JA; Dean RT
    Atherosclerosis; 1993 Feb; 99(1):107-20. PubMed ID: 8384855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chylomicron-remnant-induced foam cell formation and cytotoxicity: a possible mechanism of cell death in atherosclerosis.
    Yu KC; Mamo JC
    Clin Sci (Lond); 2000 Feb; 98(2):183-92. PubMed ID: 10657274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification.
    Hwang J; Wang J; Morazzoni P; Hodis HN; Sevanian A
    Free Radic Biol Med; 2003 May; 34(10):1271-82. PubMed ID: 12726915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors.
    Lin SJ; Shyue SK; Shih MC; Chu TH; Chen YH; Ku HH; Chen JW; Tam KB; Chen YL
    Atherosclerosis; 2007 Jan; 190(1):124-34. PubMed ID: 16600249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.