These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30053796)

  • 1. Disaggregation of gold nanoparticles by
    Mattsson K; Aguilar R; Torstensson O; Perry D; Bernfur K; Linse S; Hansson LA; Åkerfeldt KS; Cedervall T
    Nanotoxicology; 2018 Oct; 12(8):885-900. PubMed ID: 30053796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to sublethal concentrations of Co
    Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI
    Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna.
    Li T; Albee B; Alemayehu M; Diaz R; Ingham L; Kamal S; Rodriguez M; Bishnoi SW
    Anal Bioanal Chem; 2010 Sep; 398(2):689-700. PubMed ID: 20577719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converging hazard assessment of gold nanoparticles to aquatic organisms.
    García-Cambero JP; Núñez García M; López GD; Herranz AL; Cuevas L; Pérez-Pastrana E; Cuadal JS; Castelltort MR; Calvo AC
    Chemosphere; 2013 Oct; 93(6):1194-200. PubMed ID: 23916211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna.
    Dominguez GA; Lohse SE; Torelli MD; Murphy CJ; Hamers RJ; Orr G; Klaper RD
    Aquat Toxicol; 2015 May; 162():1-9. PubMed ID: 25734859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna.
    Lee BT; Ranville JF
    J Hazard Mater; 2012 Apr; 213-214():434-9. PubMed ID: 22402343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the influence of physicochemical properties on gold nanoparticle uptake and elimination by Daphnia magna.
    Wray AT; Klaine SJ
    Environ Toxicol Chem; 2015 Apr; 34(4):860-72. PubMed ID: 25565434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna.
    Villa S; Maggioni D; Hamza H; Di Nica V; Magni S; Morosetti B; Parenti CC; Finizio A; Binelli A; Della Torre C
    Environ Pollut; 2020 Feb; 257():113597. PubMed ID: 31744685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High bioconcentration of titanium dioxide nanoparticles in Daphnia magna determined by kinetic approach.
    Fan W; Liu L; Peng R; Wang WX
    Sci Total Environ; 2016 Nov; 569-570():1224-1231. PubMed ID: 27392581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization.
    Feswick A; Griffitt RJ; Siebein K; Barber DS
    Aquat Toxicol; 2013 Apr; 130-131():210-8. PubMed ID: 23419536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna.
    Hartmann NB; Legros S; Von der Kammer F; Hofmann T; Baun A
    Aquat Toxicol; 2012 Aug; 118-119():1-8. PubMed ID: 22494961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna.
    Nasser F; Lynch I
    J Proteomics; 2016 Mar; 137():45-51. PubMed ID: 26376098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?
    Park S; Woodhall J; Ma G; Veinot JG; Boxall AB
    Environ Toxicol Chem; 2015 Apr; 34(4):850-9. PubMed ID: 25556899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna.
    Wiench K; Wohlleben W; Hisgen V; Radke K; Salinas E; Zok S; Landsiedel R
    Chemosphere; 2009 Sep; 76(10):1356-65. PubMed ID: 19580988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia magna.
    Krystek P; Brandsma S; Leonards P; de Boer J
    Talanta; 2016 Jan; 147():289-95. PubMed ID: 26592609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios.
    Adam N; Leroux F; Knapen D; Bals S; Blust R
    Environ Pollut; 2014 Nov; 194():130-137. PubMed ID: 25108488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo biodegradation of colloidal quantum dots by a freshwater invertebrate, Daphnia magna.
    Kwon D; Kim MJ; Park C; Park J; Choi K; Yoon TH
    Aquat Toxicol; 2012 Jun; 114-115():217-22. PubMed ID: 22459343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of bio-organic eco-corona molecules reduces the toxic response to metallic nanoparticles in Daphnia magna.
    Ekvall MT; Hedberg J; Odnevall Wallinder I; Malmendal A; Hansson LA; Cedervall T
    Sci Rep; 2021 May; 11(1):10784. PubMed ID: 34031463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests.
    Römer I; White TA; Baalousha M; Chipman K; Viant MR; Lead JR
    J Chromatogr A; 2011 Jul; 1218(27):4226-33. PubMed ID: 21529813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct biokinetic behavior of ZnO nanoparticles in Daphnia magna quantified by synthesizing ⁶⁵Zn tracer.
    Li WM; Wang WX
    Water Res; 2013 Feb; 47(2):895-902. PubMed ID: 23200802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.