These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30054035)

  • 1. Synchronization of different fractional order chaotic systems with time-varying parameter and orders.
    Behinfaraz R; Badamchizadeh MA
    ISA Trans; 2018 Sep; 80():399-410. PubMed ID: 30054035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Synchronization Strategy between Two Autonomous Dissipative Chaotic Systems Using Fractional-Order Mittag-Leffler Stability.
    Liu L; Du C; Zhang X; Li J; Shi S
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control.
    Chen D; Zhang R; Sprott JC; Chen H; Ma X
    Chaos; 2012 Jun; 22(2):023130. PubMed ID: 22757537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The large key space image encryption algorithm based on modulus synchronization between real and complex fractional-order dynamical systems.
    Muthukumar P; Khan N
    Multimed Tools Appl; 2023; 82(12):17801-17825. PubMed ID: 36276603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling and synchronizing a fractional-order chaotic system using stability theory of a time-varying fractional-order system.
    Huang Y; Wang D; Zhang J; Guo F
    PLoS One; 2018; 13(3):e0194112. PubMed ID: 29601587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control and switching synchronization of fractional order chaotic systems using active control technique.
    Radwan AG; Moaddy K; Salama KN; Momani S; Hashim I
    J Adv Res; 2014 Jan; 5(1):125-32. PubMed ID: 25685479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-time generalized synchronization of non-identical fractional order chaotic systems and its application in speech secure communication.
    Yang J; Xiong J; Cen J; He W
    PLoS One; 2022; 17(3):e0263007. PubMed ID: 35320280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-time synchronization of different dimensional chaotic systems with uncertain parameters and external disturbances.
    Li J; Zheng J
    Sci Rep; 2022 Sep; 12(1):15407. PubMed ID: 36104391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive synchronization control with optimization policy for fractional-order chaotic systems between 0 and 1 and its application in secret communication.
    Li RG; Wu HN
    ISA Trans; 2019 Sep; 92():35-48. PubMed ID: 30853103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems.
    Chen L; Chai Y; Wu R
    Chaos; 2011 Dec; 21(4):043107. PubMed ID: 22225344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex Generalized Synchronization and Parameter Identification of Nonidentical Nonlinear Complex Systems.
    Wang S; Wang X; Han B
    PLoS One; 2016; 11(3):e0152099. PubMed ID: 27014879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems.
    Modiri A; Mobayen S
    ISA Trans; 2020 Oct; 105():33-50. PubMed ID: 32493578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters.
    Lu J; Cao J
    Chaos; 2005 Dec; 15(4):043901. PubMed ID: 16396593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Special Characteristics and Synchronizations of Multi Hybrid-Order Chaotic Systems.
    Liu J; Wang Z; Zhang F; Yin Y; Ma F
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Adaptive-Robust Controller for Multi-State Synchronization of Chaotic Systems with Unknown and Time-Varying Delays and Its Application in Secure Communication.
    Kekha Javan AA; Shoeibi A; Zare A; Hosseini Izadi N; Jafari M; Alizadehsani R; Moridian P; Mosavi A; Acharya UR; Nahavandi S
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization of Fractional-Order Complex Chaotic Systems Based on Observers.
    Li Z; Xia T; Jiang C
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaotic attractors that exist only in fractional-order case.
    Matouk AE
    J Adv Res; 2023 Mar; 45():183-192. PubMed ID: 36849217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Generalized Chaotic Synchronization Method Incorporating Error-Feedback Coefficients.
    Xing Y; Dong W; Zeng J; Guo P; Zhang J; Ding Q
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter Identification of Fractional-Order Discrete Chaotic Systems.
    Peng Y; Sun K; He S; Peng D
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Stabilization and Synchronization of a Novel Chaotic System with Input Saturation Constraints.
    Azar AT; Serrano FE; Zhu Q; Bettayeb M; Fusco G; Na J; Zhang W; Kamal NA
    Entropy (Basel); 2021 Aug; 23(9):. PubMed ID: 34573735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.