These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30054107)

  • 1. Anaerobic biodegradation of dissolved ethanol in a pilot-scale sand aquifer: Gas phase dynamics.
    McLeod HC; Roy JW; Smith JE
    J Contam Hydrol; 2018 Aug; 215():62-72. PubMed ID: 30054107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic biodegradation of dissolved ethanol in a pilot-scale sand aquifer: Variability in plume (redox) biogeochemistry.
    McLeod HC; Roy JW; Slater GF; Smith JE
    J Contam Hydrol; 2018 Jan; 208():35-45. PubMed ID: 29224929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow field dynamics and high ethanol content in gasohol blends enhance BTEX migration and biodegradation in groundwater.
    Rama F; Ramos DT; Müller JB; Corseuil HX; Miotliński K
    J Contam Hydrol; 2019 Apr; 222():17-30. PubMed ID: 30797547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution spatial and temporal evolution of dissolved gases in groundwater during a controlled natural gas release experiment.
    Cahill AG; Parker BL; Mayer B; Mayer KU; Cherry JA
    Sci Total Environ; 2018 May; 622-623():1178-1192. PubMed ID: 29890586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mass balance approach to investigate arsenic cycling in a petroleum plume.
    Ziegler BA; Schreiber ME; Cozzarelli IM; Crystal Ng GH
    Environ Pollut; 2017 Dec; 231(Pt 2):1351-1361. PubMed ID: 28943347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT.
    Steelman CM; Klazinga DR; Cahill AG; Endres AL; Parker BL
    J Contam Hydrol; 2017 Oct; 205():12-24. PubMed ID: 28865808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased fermentation activity and persistent methanogenesis in a model aquifer system following source removal of an ethanol blend release.
    Ma J; Rixey WG; Alvarez PJ
    Water Res; 2015 Jan; 68():479-86. PubMed ID: 25462754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer.
    Thornton SF; Quigley S; Spence MJ; Banwart SA; Bottrell S; Lerner DN
    J Contam Hydrol; 2001 Dec; 53(3-4):233-67. PubMed ID: 11820472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling.
    Amos RT; Ulrich Mayer K
    J Contam Hydrol; 2006 Sep; 87(1-2):123-54. PubMed ID: 16797104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rates of As and Trace-Element Mobilization Caused by Fe Reduction in Mixed BTEX-Ethanol Experimental Plumes.
    Ziegler BA; McGuire JT; Cozzarelli IM
    Environ Sci Technol; 2015 Nov; 49(22):13179-89. PubMed ID: 26486694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydro-biogeochemical impacts of fugitive methane on a shallow unconfined aquifer.
    Forde ON; Cahill AG; Mayer KU; Mayer B; Simister RL; Finke N; Crowe SA; Cherry JA; Parker BL
    Sci Total Environ; 2019 Nov; 690():1342-1354. PubMed ID: 31470496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic Cycling in Hydrocarbon Plumes: Secondary Effects of Natural Attenuation.
    Cozzarelli IM; Schreiber ME; Erickson ML; Ziegler BA
    Ground Water; 2016 Jan; 54(1):35-45. PubMed ID: 25612004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feeding strategies for groundwater enhanced biodenitrification in an alluvial aquifer: chemical, microbial and isotope assessment of a 1D flow-through experiment.
    Vidal-Gavilan G; Carrey R; Solanas A; Soler A
    Sci Total Environ; 2014 Oct; 494-495():241-51. PubMed ID: 25051326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer.
    Cohen GJV; Jousse F; Luze N; Höhener P; Atteia O
    J Contam Hydrol; 2016 Sep; 192():20-34. PubMed ID: 27341018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane bioattenuation and implications for explosion risk reduction along the groundwater to soil surface pathway above a plume of dissolved ethanol.
    Ma J; Rixey WG; DeVaull GE; Stafford BP; Alvarez PJ
    Environ Sci Technol; 2012 Jun; 46(11):6013-9. PubMed ID: 22568485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.
    Chong AD; Mayer KU
    J Contam Hydrol; 2017 Sep; 204():1-10. PubMed ID: 28830695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of fuel alcohol on monoaromatic hydrocarbon biodegradation and natural attenuation.
    Alvarez PJ; Hunt CS
    Rev Latinoam Microbiol; 2002; 44(2):83-104. PubMed ID: 17063777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioelectrochemical denitrification on biocathode buried in simulated aquifer saturated with nitrate-contaminated groundwater.
    Nguyen VK; Park Y; Yu J; Lee T
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15443-51. PubMed ID: 27117152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.