BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 30054355)

  • 1. A Novel β-Glucuronidase from Talaromyces pinophilus Li-93 Precisely Hydrolyzes Glycyrrhizin into Glycyrrhetinic Acid 3-
    Xu Y; Feng X; Jia J; Chen X; Jiang T; Rasool A; Lv B; Qu L; Li C
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30054355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of a novel β-glucuronidase precisely converts glycyrrhizin to glycyrrhetinic acid 3-O-mono-β-D-glucuronide from plant endophytic Chaetomium globosum DX-THS3.
    Zhang Q; Gao B; Xiao Y; Yang H; Wang Y; Du L; Zhu D
    Int J Biol Macromol; 2020 Sep; 159():782-792. PubMed ID: 32416297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition in the metabolism of glycyrrhizin with glycyrrhetic acid mono-glucuronide by mixed Eubacterium sp. GLH and Ruminococcus sp. PO1-3.
    Akao T
    Biol Pharm Bull; 2000 Feb; 23(2):149-54. PubMed ID: 10706376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolysis of glycyrrhetyl mono-glucuronide to glycyrrhetic acid by glycyrrhetyl mono-glucuronide beta-D-glucuronidase of Eubacterium sp. GLH.
    Akao T
    Biol Pharm Bull; 1997 Dec; 20(12):1245-9. PubMed ID: 9448097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics and molecular determinants of a highly selective and efficient glycyrrhizin-hydrolyzing β-glucuronidase from Staphylococcus pasteuri 3I10.
    Wei B; Wang PP; Yan ZX; Yan R
    Appl Microbiol Biotechnol; 2018 Nov; 102(21):9193-9205. PubMed ID: 30109395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of glycyrrhizin to 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide by Streptococcus LJ-22, a human intestinal bacterium.
    Kim DH; Lee SW; Han MJ
    Biol Pharm Bull; 1999 Mar; 22(3):320-2. PubMed ID: 10220293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of glycyrrhizin to 18 beta-glycyrrhetyl monoglucuronide by lysosomal beta-D-glucuronidase of animal livers.
    Akao T; Akao T; Hattori M; Kanaoka M; Yamamoto K; Namba T; Kobashi K
    Biochem Pharmacol; 1991 Mar 15-Apr 1; 41(6-7):1025-9. PubMed ID: 2009072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of isoliquiritigenin as an activator that stimulates the enzymatic production of glycyrrhetinic acid monoglucuronide.
    Wang X; Wang D; Huo Y; Dai D; Li C; Li C; Liu G
    Sci Rep; 2017 Oct; 7(1):12503. PubMed ID: 28970510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of enzymes involved in the metabolism of glycyrrhizin in various organs of rat.
    Akao T
    Biol Pharm Bull; 1998 Oct; 21(10):1036-44. PubMed ID: 9821806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH on metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by collected human intestinal flora.
    Akao T
    Biol Pharm Bull; 2001 Oct; 24(10):1108-12. PubMed ID: 11642312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-guided engineering of the substrate specificity of a fungal β-glucuronidase toward triterpenoid saponins.
    Lv B; Sun H; Huang S; Feng X; Jiang T; Li C
    J Biol Chem; 2018 Jan; 293(2):433-443. PubMed ID: 29146597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of hydrothermal hydrolysis for glycyrrhizic acid into glycyrrhetinic acid and glycyrrhetinic acid 3-O-mono-β-D-glucuronide in subcritical water.
    Fan R; Li N; Xu H; Xiang J; Wang L; Gao Y
    Food Chem; 2016 Jan; 190():912-921. PubMed ID: 26213056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiology-Based Pharmacokinetic Study on 18β-Glycyrrhetic Acid Mono-Glucuronide (GAMG) Prior to Glycyrrhizin in Rats.
    Cao M; Zuo J; Yang JG; Wu C; Yang Y; Tang W; Zhu L
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by human intestinal flora.
    Akao T
    Biol Pharm Bull; 2000 Dec; 23(12):1418-23. PubMed ID: 11145169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal deglycosylation and deconstruction effect of steam explosion: Application to high-valued glycyrrhizic acid derivatives from liquorice.
    Sui W; Zhou M; Xu Y; Wang G; Zhao H; Lv X
    Food Chem; 2020 Mar; 307():125558. PubMed ID: 31644977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-allergic activity of 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide.
    Park HY; Park SH; Yoon HK; Han MJ; Kim DH
    Arch Pharm Res; 2004 Jan; 27(1):57-60. PubMed ID: 14969340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycyrrhetic Acid 3-O-Mono-β-d-glucuronide (GAMG): An Innovative High-Potency Sweetener with Improved Biological Activities.
    Guo L; Katiyo W; Lu L; Zhang X; Wang M; Yan J; Ma X; Yang R; Zou L; Zhao W
    Compr Rev Food Sci Food Saf; 2018 Jul; 17(4):905-919. PubMed ID: 33350117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities.
    Kim DH; Hong SW; Kim BT; Bae EA; Park HY; Han MJ
    Arch Pharm Res; 2000 Apr; 23(2):172-7. PubMed ID: 10836746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycyrrhizin stimulates growth of Eubacterium sp. strain GLH, a human intestinal anaerobe.
    Akao T; Akao T; Kobashi K
    Appl Environ Microbiol; 1988 Aug; 54(8):2027-30. PubMed ID: 3178209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computation-Aided Rational Deletion of C-Terminal Region Improved the Stability, Activity, and Expression Level of GH2 β-Glucuronidase.
    Han B; Hou Y; Jiang T; Lv B; Zhao L; Feng X; Li C
    J Agric Food Chem; 2018 Oct; 66(43):11380-11389. PubMed ID: 30296070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.