These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 30054363)

  • 1. A Novel Shewanella Isolate Enhances Corrosion by Using Metallic Iron as the Electron Donor with Fumarate as the Electron Acceptor.
    Philips J; Van den Driessche N; De Paepe K; Prévoteau A; Gralnick JA; Arends JBA; Rabaey K
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30054363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Acetobacterium strain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism as Sporomusa sphaeroides.
    Philips J; Monballyu E; Georg S; De Paepe K; Prévoteau A; Rabaey K; Arends JBA
    FEMS Microbiol Ecol; 2019 Feb; 95(2):. PubMed ID: 30445447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron Corrosion via Direct Metal-Microbe Electron Transfer.
    Tang HY; Holmes DE; Ueki T; Palacios PA; Lovley DR
    mBio; 2019 May; 10(3):. PubMed ID: 31088920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor.
    Kato S; Yumoto I; Kamagata Y
    Appl Environ Microbiol; 2015 Jan; 81(1):67-73. PubMed ID: 25304512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shewanella spp. Use acetate as an electron donor for denitrification but not ferric iron or fumarate reduction.
    Yoon S; Sanford RA; Löffler FE
    Appl Environ Microbiol; 2013 Apr; 79(8):2818-22. PubMed ID: 23396327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the enhancement of zero valent iron on microbial azo reduction.
    Fang Y; Xu M; Wu WM; Chen X; Sun G; Guo J; Liu X
    BMC Microbiol; 2015 Apr; 15():85. PubMed ID: 25888062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.
    Deutzmann JS; Sahin M; Spormann AM
    mBio; 2015 Apr; 6(2):. PubMed ID: 25900658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1.
    Iino T; Ito K; Wakai S; Tsurumaru H; Ohkuma M; Harayama S
    Appl Environ Microbiol; 2015 Mar; 81(5):1839-46. PubMed ID: 25548048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H
    Woodard TL; Ueki T; Lovley DR
    mBio; 2023 Apr; 14(2):e0007623. PubMed ID: 36786581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform and Pitting Corrosion of Carbon Steel by Shewanella oneidensis MR-1 under Nitrate-Reducing Conditions.
    Miller RB; Lawson K; Sadek A; Monty CN; Senko JM
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell density related H2 consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by Shewanella oneidensis MR-1.
    De Windt W; Boon N; Siciliano SD; Verstraete W
    Environ Microbiol; 2003 Nov; 5(11):1192-202. PubMed ID: 14641597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role.
    Kees ED; Pendleton AR; Paquete CM; Arriola MB; Kane AL; Kotloski NJ; Intile PJ; Gralnick JA
    Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31175188
    [No Abstract]   [Full Text] [Related]  

  • 13. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The outer membrane protein Omp35 affects the reduction of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1.
    Maier TM; Myers CR
    BMC Microbiol; 2004 Jun; 4():23. PubMed ID: 15212692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking Electron Uptake from a Cathode into
    Rowe AR; Rajeev P; Jain A; Pirbadian S; Okamoto A; Gralnick JA; El-Naggar MY; Nealson KH
    mBio; 2018 Feb; 9(1):. PubMed ID: 29487241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity.
    Schütz MK; Moreira R; Bildstein O; Lartigue JE; Schlegel ML; Tribollet B; Vivier V; Libert M
    Bioelectrochemistry; 2014 Jun; 97():61-8. PubMed ID: 24064199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron corrosion by novel anaerobic microorganisms.
    Dinh HT; Kuever J; Mussmann M; Hassel AW; Stratmann M; Widdel F
    Nature; 2004 Feb; 427(6977):829-32. PubMed ID: 14985759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms.
    Kostka JE; Dalton DD; Skelton H; Dollhopf S; Stucki JW
    Appl Environ Microbiol; 2002 Dec; 68(12):6256-62. PubMed ID: 12450850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential reduction of FeIII over fumarate by Geobacter sulfurreducens.
    Esteve-Núñez A; Núñez C; Lovley DR
    J Bacteriol; 2004 May; 186(9):2897-9. PubMed ID: 15090532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions.
    Schütz MK; Schlegel ML; Libert M; Bildstein O
    Environ Sci Technol; 2015 Jun; 49(12):7483-90. PubMed ID: 25988515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.