BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30054385)

  • 1. Misfolding-prone proteins are reversibly sequestered to an Hsp42-associated granule upon chronological aging.
    Lee HY; Chao JC; Cheng KY; Leu JY
    J Cell Sci; 2018 Aug; 131(16):. PubMed ID: 30054385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells.
    Liu IC; Chiu SW; Lee HY; Leu JY
    Mol Biol Cell; 2012 Apr; 23(7):1231-42. PubMed ID: 22337769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae.
    Haslbeck M; Braun N; Stromer T; Richter B; Model N; Weinkauf S; Buchner J
    EMBO J; 2004 Feb; 23(3):638-49. PubMed ID: 14749732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiated cytoplasmic granule formation in quiescent and non-quiescent cells upon chronological aging.
    Lee HY; Cheng KY; Chao JC; Leu JY
    Microb Cell; 2016 Mar; 3(3):109-119. PubMed ID: 28357341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae.
    Specht S; Miller SB; Mogk A; Bukau B
    J Cell Biol; 2011 Nov; 195(4):617-29. PubMed ID: 22065637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A prion-like domain in Hsp42 drives chaperone-facilitated aggregation of misfolded proteins.
    Grousl T; Ungelenk S; Miller S; Ho CT; Khokhrina M; Mayer MP; Bukau B; Mogk A
    J Cell Biol; 2018 Apr; 217(4):1269-1285. PubMed ID: 29362223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant expression and in vitro refolding of the yeast small heat shock protein Hsp42.
    Haslbeck M
    Int J Biol Macromol; 2006 Mar; 38(2):107-14. PubMed ID: 16488470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syntaxin 5-dependent phosphorylation of the small heat shock protein Hsp42 and its role in protein quality control.
    Ahmadpour D; Kumar N; Fischbach A; Chawla S; Widlund PO; Nyström T
    FEBS J; 2023 Oct; 290(19):4744-4761. PubMed ID: 37306264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoplasmic redox imbalance in the thioredoxin system activates Hsf1 and results in hyperaccumulation of the sequestrase Hsp42 with misfolded proteins.
    Goncalves D; Duy DL; Peffer S; Morano KA
    Mol Biol Cell; 2024 Apr; 35(4):ar53. PubMed ID: 38381577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast.
    Jacobson T; Navarrete C; Sharma SK; Sideri TC; Ibstedt S; Priya S; Grant CM; Christen P; Goloubinoff P; Tamás MJ
    J Cell Sci; 2012 Nov; 125(Pt 21):5073-83. PubMed ID: 22946053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Toolbox for Rapid Quantitative Assessment of Chronological Lifespan and Survival in Saccharomyces cerevisiae.
    Chadwick SR; Pananos AD; Di Gregorio SE; Park AE; Etedali-Zadeh P; Duennwald ML; Lajoie P
    Traffic; 2016 Jun; 17(6):689-703. PubMed ID: 26939796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing P-bodies and stress granules in Saccharomyces cerevisiae.
    Buchan JR; Nissan T; Parker R
    Methods Enzymol; 2010; 470():619-40. PubMed ID: 20946828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast.
    MacDiarmid CW; Taggart J; Kerdsomboon K; Kubisiak M; Panascharoen S; Schelble K; Eide DJ
    J Biol Chem; 2013 Oct; 288(43):31313-27. PubMed ID: 24022485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae Tti2 Regulates PIKK Proteins and Stress Response.
    Hoffman KS; Duennwald ML; Karagiannis J; Genereaux J; McCarton AS; Brandl CJ
    G3 (Bethesda); 2016 Jun; 6(6):1649-59. PubMed ID: 27172216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MitoStores: chaperone-controlled protein granules store mitochondrial precursors in the cytosol.
    Krämer L; Dalheimer N; Räschle M; Storchová Z; Pielage J; Boos F; Herrmann JM
    EMBO J; 2023 Apr; 42(7):e112309. PubMed ID: 36704946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EGD1 (β-NAC) mRNA is localized in a novel cytoplasmic structure in Saccharomyces cerevisiae.
    Hayashi S; Andoh T; Tani T
    Genes Cells; 2011 Mar; 16(3):316-29. PubMed ID: 21323804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Transient Protein Aggregate-like Centers Is a General Strategy Postponing Degradation of Misfolded Intermediates.
    Boronat S; Cabrera M; Vega M; Alcalá J; Salas-Pino S; Daga RR; Ayté J; Hidalgo E
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hybrid-Body Containing Constituents of Both P-Bodies and Stress Granules Forms in Response to Hypoosmotic Stress in Saccharomyces cerevisiae.
    Shah KH; Varia SN; Cook LA; Herman PK
    PLoS One; 2016; 11(6):e0158776. PubMed ID: 27359124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversing deleterious protein aggregation with re-engineered protein disaggregases.
    Jackrel ME; Shorter J
    Cell Cycle; 2014; 13(9):1379-83. PubMed ID: 24694655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the Role of P-Bodies and Stress Granules in Protein Quality Control.
    Nostramo R; Xing S; Zhang B; Herman PK
    Genetics; 2019 Sep; 213(1):251-265. PubMed ID: 31285256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.