These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30054478)

  • 21. Recent advances in synthetic biology for engineering isoprenoid production in yeast.
    Vickers CE; Williams TC; Peng B; Cherry J
    Curr Opin Chem Biol; 2017 Oct; 40():47-56. PubMed ID: 28623722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solving yeast jigsaw puzzles over a glass of wine: Synthetic genome engineering pioneers new possibilities for wine yeast research.
    Pretorius IS
    EMBO Rep; 2017 Nov; 18(11):1875-1884. PubMed ID: 29061873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Standardization of Synthetic Biology Tools and Assembly Methods for
    Malcı K; Watts E; Roberts TM; Auxillos JY; Nowrouzi B; Boll HO; Nascimento CZSD; Andreou A; Vegh P; Donovan S; Fragkoudis R; Panke S; Wallace E; Elfick A; Rios-Solis L
    ACS Synth Biol; 2022 Aug; 11(8):2527-2547. PubMed ID: 35939789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methods to Synthesize Large DNA Fragments for a Synthetic Yeast Genome.
    Cai Y; Dai J
    Cold Spring Harb Protoc; 2017 Mar; 2017(3):. PubMed ID: 28250211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MESSI: metabolic engineering target selection and best strain identification tool.
    Kang K; Li J; Lim BL; Panagiotou G
    Database (Oxford); 2015; 2015():. PubMed ID: 26255308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling the fitness landscapes of a SCRaMbLEd yeast genome.
    Yang B; Misirli G; Wipat A; Hallinan J
    Biosystems; 2022 Sep; 219():104730. PubMed ID: 35772570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening.
    Gowers GF; Chee SM; Bell D; Suckling L; Kern M; Tew D; McClymont DW; Ellis T
    Nat Commun; 2020 Feb; 11(1):868. PubMed ID: 32054834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SCRaMbLEing to understand and exploit structural variation in genomes.
    Steensels J; Gorkovskiy A; Verstrepen KJ
    Nat Commun; 2018 May; 9(1):1937. PubMed ID: 29789533
    [No Abstract]   [Full Text] [Related]  

  • 29. Total synthesis of a eukaryotic chromosome: Redesigning and SCRaMbLE-ing yeast.
    Jovicevic D; Blount BA; Ellis T
    Bioessays; 2014 Sep; 36(9):855-60. PubMed ID: 25048260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromosomal Rearrangements of Synthetic Yeast by SCRaMbLE.
    Luo Z; Jiang S; Dai J
    Methods Mol Biol; 2021; 2196():153-165. PubMed ID: 32889719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SynV and SynX: A story more than DNA synthesis.
    Ren H; Zhao H
    Sci China Life Sci; 2017 May; 60(5):558-560. PubMed ID: 28477058
    [No Abstract]   [Full Text] [Related]  

  • 32. Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome.
    Kutyna DR; Onetto CA; Williams TC; Goold HD; Paulsen IT; Pretorius IS; Johnson DL; Borneman AR
    Nat Commun; 2022 Jun; 13(1):3628. PubMed ID: 35750675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.
    Turner TL; Kim H; Kong II; Liu JJ; Zhang GC; Jin YS
    Adv Biochem Eng Biotechnol; 2018; 162():175-215. PubMed ID: 27913828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae.
    Lin Q; Jia B; Mitchell LA; Luo J; Yang K; Zeller KI; Zhang W; Xu Z; Stracquadanio G; Bader JS; Boeke JD; Yuan YJ
    ACS Synth Biol; 2015 Mar; 4(3):213-20. PubMed ID: 24895839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome.
    Blount BA; Gowers GF; Ho JCH; Ledesma-Amaro R; Jovicevic D; McKiernan RM; Xie ZX; Li BZ; Yuan YJ; Ellis T
    Nat Commun; 2018 May; 9(1):1932. PubMed ID: 29789540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthetic genomes engineered by SCRaMbLEing.
    Zhang F; Voytas DF
    Sci China Life Sci; 2018 Aug; 61(8):975-977. PubMed ID: 29951952
    [No Abstract]   [Full Text] [Related]  

  • 37. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast.
    Nielsen J
    mBio; 2014 Nov; 5(6):e02153. PubMed ID: 25370498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathway swapping: Toward modular engineering of essential cellular processes.
    Kuijpers NG; Solis-Escalante D; Luttik MA; Bisschops MM; Boonekamp FJ; van den Broek M; Pronk JT; Daran JM; Daran-Lapujade P
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15060-15065. PubMed ID: 27956602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Opportunities for yeast metabolic engineering: Lessons from synthetic biology.
    Krivoruchko A; Siewers V; Nielsen J
    Biotechnol J; 2011 Mar; 6(3):262-76. PubMed ID: 21328545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systems metabolic engineering of microorganisms for natural and non-natural chemicals.
    Lee JW; Na D; Park JM; Lee J; Choi S; Lee SY
    Nat Chem Biol; 2012 May; 8(6):536-46. PubMed ID: 22596205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.