These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30054524)

  • 61. Lithography-free disordered metal-insulator-metal nanoantennas for colorimetric sensing.
    Eftekhari Z; Ghobadi A; Ozbay E
    Opt Lett; 2020 Dec; 45(24):6719-6722. PubMed ID: 33325878
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Color filters based on a nanoporous Al-AAO resonator featuring structure tolerant color saturation.
    Yue W; Li Y; Wang C; Yao Z; Lee SS; Kim NY
    Opt Express; 2015 Oct; 23(21):27474-83. PubMed ID: 26480407
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural color filters based on an all-dielectric metasurface exploiting silicon-rich silicon nitride nanodisks.
    Park CS; Koirala I; Gao S; Shrestha VR; Lee SS; Choi DY
    Opt Express; 2019 Jan; 27(2):667-679. PubMed ID: 30696149
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hyper-selective plasmonic color filters.
    Fleischman D; Sweatlock LA; Murakami H; Atwater H
    Opt Express; 2017 Oct; 25(22):27386-27395. PubMed ID: 29092212
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Free-standing plasmonic metal-dielectric-metal bandpass filter with high transmission efficiency.
    Liang Y; Zhang S; Cao X; Lu Y; Xu T
    Sci Rep; 2017 Jun; 7(1):4357. PubMed ID: 28659625
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-resolution plasmonic structural colors from nanohole arrays with bottom metal disks.
    Lu BR; Xu C; Liao J; Liu J; Chen Y
    Opt Lett; 2016 Apr; 41(7):1400-3. PubMed ID: 27192246
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A high speed electrically switching reflective structural color display with large color gamut.
    Wang W; Guan Z; Xu H
    Nanoscale; 2021 Jan; 13(2):1164-1171. PubMed ID: 33403380
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material.
    Lee SY; Kim YH; Cho SM; Kim GH; Kim TY; Ryu H; Kim HN; Kang HB; Hwang CY; Hwang CS
    Sci Rep; 2017 Jan; 7():41152. PubMed ID: 28117346
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Plasmon filters and resonators in metal-insulator-metal waveguides.
    Neutens P; Lagae L; Borghs G; Van Dorpe P
    Opt Express; 2012 Feb; 20(4):3408-23. PubMed ID: 22418100
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural Colors on Al Surface via Capped Cu-Si
    Rahman MA; Kim D; Arora D; Huh JY; Byun JY
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838171
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design of curved photonic cavities for a narrow-band widely tunable resonance ranging 200 nm.
    Liang G; Danner AJ; Lee C
    Opt Express; 2012 Aug; 20(17):18937-45. PubMed ID: 23038533
    [TBL] [Abstract][Full Text] [Related]  

  • 72. White balance by tunable spectral responsivities.
    Zaraga F; Langfelder G
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jan; 27(1):31-9. PubMed ID: 20035300
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Lithography-free, manganese-based ultrabroadband absorption through annealing-based deformation of thin layers into metal-air composites.
    Aalizadeh M; Khavasi A; Butun B; Ozbay E
    Opt Lett; 2019 Jul; 44(14):3598-3601. PubMed ID: 31305581
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Reconfigurable optical-microwave filter banks using thermo-optically tuned Bragg Mach-Zehnder devices.
    Soref RA; De Leonardis F; Passaro VMN
    Opt Express; 2018 Jun; 26(12):14879-14893. PubMed ID: 30114793
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electrostatically Tuned Optical Filters Based on Hybrid Plasmonic-Dielectric Thin Films for Hyperspectral Imaging.
    Abdelghfar A; Mousa MA; Fouad BM; Saad AH; Anous N; Gaber N
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34210049
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Widely bandwidth-tunable silicon filter with an unlimited free-spectral range.
    St-Yves J; Bahrami H; Jean P; LaRochelle S; Shi W
    Opt Lett; 2015 Dec; 40(23):5471-4. PubMed ID: 26625028
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrically programmable solid-state metasurfaces via flash localised heating.
    Zangeneh Kamali K; Xu L; Gagrani N; Tan HH; Jagadish C; Miroshnichenko A; Neshev D; Rahmani M
    Light Sci Appl; 2023 Feb; 12(1):40. PubMed ID: 36810847
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Programmable directional color dynamics using plasmonics.
    Kim G; Kim D; Ko S; Han JH; Kim J; Ko JH; Song YM; Jeong HH
    Microsyst Nanoeng; 2024; 10():22. PubMed ID: 38304019
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optical notch filter with tunable bandwidth based on guided-mode resonant polarization-sensitive spectral feature.
    Qian L; Zhang D; Dai B; Wang Q; Huang Y; Zhuang S
    Opt Express; 2015 Jul; 23(14):18300-9. PubMed ID: 26191886
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electrically tunable infrared filter based on the liquid crystal Fabry-Perot structure for spectral imaging detection.
    Zhang H; Muhammmad A; Luo J; Tong Q; Lei Y; Zhang X; Sang H; Xie C
    Appl Opt; 2014 Sep; 53(25):5632-9. PubMed ID: 25321356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.